bombardment energy
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 7)

H-INDEX

15
(FIVE YEARS 1)

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1149
Author(s):  
Jihua Peng ◽  
Yang Xiao ◽  
Yinglong Peng ◽  
Weiqiu Li ◽  
Jiwei Zeng

WC-Co cermet was plasma-nitrided with the assistance of a hollow cathode ion source at 400 °C under a vacuum of 3–8 Pa. Hot film chemical vapor deposition (HFCVD) of a diamond coating was carried out on the nitrided specimen, without chemical etching. Scanning electronic microscopy, electron probing microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize the surface microstructure of the nitride specimens and the coatings. A thin surface conversion layer with a specific structure was formed, in which the primary Co binder was transformed into Co-rich particles. The Co-rich particles consisted of a γ-Co core and a Co4N outer layer. This specific surface conversion layer significantly suppresses the out-diffusion and catalytic graphitization of Co during HFCVD. The existent phase, morphology, and density distribution of Co compounds can be tuned by varying the nitriding parameters, such as gas media, ionization ratio, bombardment energy flux, and nitriding duration.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2292
Author(s):  
Nasim Gholami ◽  
Babak Jaleh ◽  
Reza Golbedaghi ◽  
Majid Mojtahedzadeh Larijani ◽  
Pikul Wanichapichart ◽  
...  

Chitosan has been used for biomedical applications in recent years, primarily because of its biocompatibility. A chitosan membrane with a 30 μm thickness was prepared and investigated for its surface modification using methane ions. Methane ions were implanted into the chitosan membrane using a Kaufman ion source; bombardment was accomplished using three accelerating voltages of ion beams—30, 55, and 80 kV. The influence of the ion bombardment on morphology, crystallinity, and hydrophilicity was investigated. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy analysis showed that a triplet bond appeared after the implantation of methane ions (acceleration voltage: 80 kV), culminating in the creation of a more amorphous membrane structure. The analyses of atomic force microscopy (AFM) images showed that, with the increase in bombardment energy, the roughness of the surface changed. These results revealed that ion bombardment improved the hydrophilicity of the membranes and the water fluxes of chitosan membranes altered after methane ion bombardment.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3928 ◽  
Author(s):  
Kashif Shahzad ◽  
Kunpeng Jia ◽  
Chao Zhao ◽  
Dahai Wang ◽  
Muhammad Usman ◽  
...  

The effect of ion-induced defects on graphene was studied to investigate the contact resistance of 40 nm palladium (Pd) contacting on graphene. The defect development was considered and analyzed by irradiating boron (B), carbon (C), nitrogen (N2), and argon (Ar) ions on as-transferred graphene before metallization. The bombardment energy was set at 1.5 keV and ion dose at 1 × 1014 ions/cm2. The defect yields under different ion irradiation conditions were examined by Raman spectroscopy. Although, dissolution process occurs spontaneously upon metal deposition, chemical reaction between metal and graphene is more pronounced at higher temperatures. The rapid thermal annealing (RTA) treatment was performed to improve the Pd/graphene contact after annealing at 450 °C, 500 °C, 550 °C, and 600 °C. The lowest contact resistance of 95.2 Ω-µm was achieved at 550 °C RTA with Ar ion irradiation. We have proved that ion irradiation significantly enhance the Pd/graphene contact instead of pd/pristine graphene contact. Therefore, in view of the contention of results ion induced defects before metallization plus the RTA served an excellent purpose to reduce the contact resistance.


2019 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Hirotsugu Sugiura ◽  
Hiroki Kondo ◽  
Takayoshi Tsutsumi ◽  
Kenji Ishikawa ◽  
Masaru Hori

Hydrogenated amorphous carbon (a-C:H) films have attracted much attention, because of their excellent physical and chemical properties, such as high mechanical hardness, chemical robustness, a wide variety of optical bandgaps, and so forth. Although an ion bombardment energy has been regarded as essential in the well-know subplantation model, it alone is inadequate especially in complicated reactions of a plasma-enhanced chemical vapor deposition process. In this study, an ion bombardment energy flux (ΓEi) was proposed as a crucial factor to determine chemical compositions and structures of a-C:H films. To obtain the amounts of ΓEi, electron densities, hydrogen (H) excitation temperatures, and negative direct current (DC) self-bias voltage (-VDC) were measured. The deposition rate increased, and sp2-C clusters incorporation was induced by the ΓEi. With increasing ΓEi, photoluminescence (PL) backgrounds in Raman spectra decreased, while spin densities in electron spin resonance (ESR) measurements increased. These results suggested the H content of a-C:H film decreased depending on the amount of ΓEi. The ΓEi is one of the crucial factors to determine the properties of the a-C:H films.


2019 ◽  
Vol 21 (11) ◽  
pp. 5898-5902
Author(s):  
Shenli Zhang ◽  
Yihan Huang ◽  
Gulcin Tetiker ◽  
Saravanapriyan Sriraman ◽  
Alex Paterson ◽  
...  

Cl ion bombardment energy is clearly responsible for disturbing Ge surface layers.


NANO ◽  
2017 ◽  
Vol 12 (02) ◽  
pp. 1750025 ◽  
Author(s):  
Haegyu Jang ◽  
Heeyeop Chae

Dual radio frequency (RF) powers are widely used with commercial plasma etchers for various nanoscale patterns. However, it is challenging to understand the relationship among the dual RF powers and the etching processes. In this work, the effect of the dual RF bias powers on SiO2 sputter etching was investigated in inductively coupled plasma (ICP). The relationship was studied among 2[Formula: see text]MHz and 27.12[Formula: see text]MHz RF bias powers, a 13.56[Formula: see text]MHz ICP source power, the ion bombardment energy, the ion density and the etching rate. The results show that the ion density of Ar plasma can be controlled in the region of 109–10[Formula: see text] ions/cm3, and DC self-bias can be controlled by controlling the ratio of dual RF bias powers while the ion density is maintained with the operation of source power. This work reveals that the dual RF bias powers expand the process window of the ion density and the ion bombardment energy independently in the ICP plasma source. The sputter etching rate is also modeled using the ion-enhanced etching model, and the model shows good agreement with the etching rate data.


2016 ◽  
Vol 13 (10-12) ◽  
pp. 782-785
Author(s):  
Junkang Wang ◽  
Ileana Florea ◽  
Pavel V. Bulkin ◽  
Jean-Luc Maurice ◽  
Erik V. Johnson

Sign in / Sign up

Export Citation Format

Share Document