The Materials Science of “Permeable Polysilicon” Thin Films

2001 ◽  
Vol 687 ◽  
Author(s):  
George M Dougherty ◽  
Timothy Sands ◽  
Albert P. Pisano

AbstractPolycrystalline silicon thin films that are permeable to fluids, known as permeable polysilicon, have been reported by several researchers. Such films have great potential for the fabrication of difficult to make MEMS structures, but their use has been hampered by poor process repeatability and a lack of physical understanding of the origin of film permeability and how to control it. We have completed a methodical study of the relationship between process, microstructure, and properties for permeable polysilicon thin films. As a result, we have determined that the film permeability is caused by the presence of nanoscale pores, ranging from 10-50 nm in size, that form spontaneously during LPCVD deposition within a narrow process window. The unusual microstructure within this process window corresponds to the transition between a semicrystalline growth regime, exhibiting tensile residual stress, and a columnar growth regime exhibiting compressive residual stress. A simple kinetic model is proposed to explain the unusual morphology within this transition regime. It is determined that measurements of the film residual stress can be used to tune the deposition parameters to repeatably produce permeable films for applications. The result is a convenient, single-step process that enables the elegant fabrication of many previously challenging structures.

2002 ◽  
Vol 17 (9) ◽  
pp. 2235-2242 ◽  
Author(s):  
G. G. Dougherty ◽  
A. A. Pisano ◽  
T. Sands

It is known that thin films of polycrystalline silicon, deposited under the right conditions, can be permeable to HF-based etching solutions. While these films offer unique capabilities for microfabrication, both the poor reproducibility of the permeable film properties and the lack of a detailed physical understanding of the material have limited their application. This work provides a methodical study of the relationship between process, microstructure, and properties of permeable polycrystalline silicon thin films. It is shown that the permeability is a result of small pores, on the order of 10 nm, between the 100–200-nm hemispherical grains characteristic of the permeable film morphology. This morphology occurs only in nearly stress-free films grown in a narrow temperature range corresponding to the transition between tensile and compressive film growth regimes. This result strongly suggests that the monitoring of residual film stress can provide the process control needed to reliably produce permeable films. A simple kinetic model is proposed to explain the evolution of the morphology of the permeable films.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Lukas Terkowski ◽  
Iain W. Martin ◽  
Daniel Axmann ◽  
Malte Behrendsen ◽  
Felix Pein ◽  
...  

2010 ◽  
Vol 75 ◽  
pp. 202-207
Author(s):  
Victor Ríos ◽  
Elvia Díaz-Valdés ◽  
Jorge Ricardo Aguilar ◽  
T.G. Kryshtab ◽  
Ciro Falcony

Bi-Pb-Sr-Ca-Cu-O (BPSCCO) and Bi-Pb-Sb-Sr-Ca-Cu-O (BPSSCCO) thin films were grown on MgO single crystal substrates by pulsed laser deposition. The deposition was carried out at room temperature during 90 minutes. A Nd:YAG excimer laser ( = 355 nm) with a 2 J/pulse energy density operated at 30 Hz was used. The distance between the target and substrate was kept constant at 4,5 cm. Nominal composition of the targets was Bi1,6Pb0,4Sr2Ca2Cu3O and Bi1,6Pb0,4Sb0,1Sr2Ca2Cu3OSuperconducting targets were prepared following a state solid reaction. As-grown films were annealed at different conditions. As-grown and annealed films were characterized by XRD, FTIR, and SEM. The films were prepared applying an experimental design. The relationship among deposition parameters and their effect on the formation of superconducting Bi-system crystalline phases was studied.


2009 ◽  
Vol 255 (19) ◽  
pp. 8252-8256 ◽  
Author(s):  
Thanh Nga Nguyen ◽  
Van Duy Nguyen ◽  
Sungwook Jung ◽  
Junsin Yi

MRS Advances ◽  
2020 ◽  
Vol 5 (23-24) ◽  
pp. 1215-1223
Author(s):  
R.R. Phiri ◽  
O.P. Oladijo ◽  
E.T. Akinlabi

AbstractControl and manipulation of residual stresses in thin films is a key for attaining coatings with high mechanical and tribological performance. It is therefore imperative to have reliable residual stress measurements methods to further understand the dynamics involved. The sin2ψ method of X-ray diffraction was used to investigate the residual stresses on the tungsten carbide cobalt thin films deposited on a mild steel surface to understand the how the deposition parameters influence the generation of residual stresses within the substrate surface. X-ray spectra of the surface revealed an amorphous phase of the thin film therefore the stress measured was of the substrate surface and the effects of sputtering parameters on residual stress were analysed. Compressive stresses were identified within all samples studied. The results reveal that as the sputtering parameters are varied, the residual stresses also change. Optimum deposition parameters in terms of residual stresses were suggested.


2012 ◽  
Vol 468-471 ◽  
pp. 1912-1915
Author(s):  
Hui Zhi Ren ◽  
Ying Zhao ◽  
Xiao Dan Zhang ◽  
Hong Ge ◽  
Zong Pan Wang

We report on microcrystalline silicon thin films and a-Si:H/a-SiGe:H/μc-Si:H triple-junction p-i-n solar cells deposited on large-area glass substrate. Microcrystalline silicon (μc-Si:H) bottom cells were deposited at a VHF-PECVD deposition system with 40.68MHz. It is necessary to develop the uniformity of μc-Si:H thin films for large-area deposition of high-quality triple-junction solar cells. By optimizing the deposition parameters, μc-Si:H thin films have been obtained with good thickness and very good crystalline volume fractions uniformity over the whole substrates area. The triple-junction module have been successful fabricated. The best module on 0.79 m2 size substrates has an initial total-area efficiency of 8.35%.


1990 ◽  
Vol 202 ◽  
Author(s):  
P. Krulevitch ◽  
Tai D. Nguyen ◽  
G. C. Johnson ◽  
R. T. Howe ◽  
H. R. Wenk ◽  
...  

ABSTRACTAn investigation of undoped LPCVD polycrystalline silicon films deposited at temperatures ranging from 605 to 700 C and silane pressures from 300 to 550 mTorr revealed large variations in stress with processing conditions and a correlation between stress and texture. TEM and HRTEM analysis show that morphology differences also exist. At lower temperatures (≈605 C) and higher pressures (≈400 mTorr), the films appear to deposit in an amorphous state and crystallize during the deposition to form microstructures characterized by equi-axed grains, tensile residual stress, and a texture with {110} and {11/} (/=2 or 3) components. Higher temperatures (between 620 and 650 C) produce films that nucleate at the Si02 interface, creating a {110} oriented columnar microstructure. At 700 C, the grains are still columnar, but the dominant texture is {100}. Films deposited at temperatures greater than 620 C exhibit compressive stress, and some contain regions of hexagonal silicon. This paper proposes possible causes of the varying stresses, textures, and microstructures in the films.


2003 ◽  
Vol 199 (2) ◽  
pp. 238-242 ◽  
Author(s):  
Guofu Hou ◽  
Yaohua Mai ◽  
Junming Xue ◽  
Ying Zhao ◽  
Xiaodan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document