An investigation of thermal sprayed aluminum/hard anodic composite coating on wear and corrosion resistant performance

2009 ◽  
Vol 517 (17) ◽  
pp. 5265-5269 ◽  
Author(s):  
C.H. Chang ◽  
M.C. Jeng ◽  
C.Y. Su ◽  
C.L. Chang
Alloy Digest ◽  
2010 ◽  
Vol 59 (1) ◽  

Abstract Carpenter CTS-204P (Micro Melt 20-4) alloy is a highly wear- and corrosion-resistant, air-hardening martensitic cold-work stainless die steel produced using Carpenter’s Micro-Melt powder metallurgy process. The excellent wear resistance of the alloy is provided by a significant volume fraction of hard vanadium-rich carbides, while the outstanding corrosion resistance of the alloy is obtained as a result of the chromium-rich matrix. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on corrosion and wear resistance as well as forming, heat treating, and machining. Filing Code: SS-1051. Producer or source: Carpenter Specialty Alloys.


2019 ◽  
pp. 110-114
Author(s):  
D. A. Gerashchenkov ◽  
T. I. Bobkova ◽  
A. F. Vasiliev ◽  
P. A. Kuznetsov ◽  
E. A. Samodelkin ◽  
...  

A composition of a precision alloy based on the Ni–Cr–Mo system for wear and corrosion-resistant coatings by supersonic cold gas dynamic spraying has been developed. The optimum coatings composition provides high level of operational properties; its application is very promising for protection of structural and functional elements of marine equipment from aggressive environmental influence.


RSC Advances ◽  
2016 ◽  
Vol 6 (67) ◽  
pp. 62083-62090 ◽  
Author(s):  
Rekha M. Y. ◽  
M. K. Punith Kumar ◽  
Chandan Srivastava

This work illustrates the role of graphene in enhancing the corrosion resistant properties of chromium–graphene composite coating when compared to the corrosion resistant properties of pure chromium coating containing ZnO nanoparticles.


2008 ◽  
Vol 368-372 ◽  
pp. 1194-1197 ◽  
Author(s):  
Chen Ma ◽  
Ying Hui Wang ◽  
Mu Qin Li ◽  
Li Jie Qu

Rare earth/calcium phosphate composite coatings were fabricated on the surface of Ti-6Al-4V by micro-arc oxidation (MAO) technique. The wear properties and corrosion resistant of rare earth/ calcium phosphate composite coatings in the simulated body fluid (SBF) have been investigated and the bioactivity of the composite coatings were evaluated. The results show that the friction coefficient of the composite coatings in the SBF is only 0.15~0.18 and the anode polarization potential of the coating has been obviously enhanced about 0.18V compared with that of coatings of calcium phosphate coatings. So the composite coatings have excellent wear and corrosion resistant properties. XRD analysis indicates that the composite coatings can induce hydroxyapatite to form on its surface after soaked in SBF for 9d, which shows that the composite coatings own good bioactivity.


Sign in / Sign up

Export Citation Format

Share Document