Numerical simulation for an estimation of the jacking force of ultra-long-distance pipe jacking with frictional property testing at the rock mass–pipe interface

2019 ◽  
Vol 89 ◽  
pp. 205-221 ◽  
Author(s):  
Chao Li ◽  
Zuliang Zhong ◽  
Xinrong Liu ◽  
Yiliang Tu ◽  
Guannan He
2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Ziyong He ◽  
Jiangong Chen

Line 2 of the Guanjingkou Pipe Jacking Project in Chongqing encountered a pipe sticking problem, whose occurrence was inevitably attributed to the higher total frictional resistance of pipe strings rather than the maximum jacking force. Line 1, which is about to start construction, has basically the same construction environment as Line 2 using the same microshield and pipe string sizes. To avoid repeating the pipe sticking problem of Line 2, the mutual friction characteristics between the surrounding rocks and jacked pipe strings are studied for Line 1 by adopting the same test method under seven complex contact conditions (the presence or various combinations of three substances, i.e., extrapipe string field debris, bentonite slurry, and sand-laden waste slurry, on the jacked pipe string-surrounding rock contact surface are mainly considered). The results show that sufficient bentonite slurry can effectively reduce the frictional resistance, and when the amount of bentonite is insufficient, the average friction coefficient (AFC) of the later contact surface increases by 50%∼70%. The comparison of the monitored versus predicted jacking forces indicates that the value predicted by the test is slightly higher than the monitored force and the variation trends of the two match well, thus proving the correctness of the test results. It is possible to continue predicting the variation trends of the jacking force and frictional resistance based on the contact situation outside the pipe string wall, which greatly lowers the probability of re-encountering pipe sticking. The test results not only explain the important role of bentonite slurry in reducing the pipe string wall frictional resistance but also suggest that an increase in the pipe string wall frictional resistance resulting from the complex contact inflow into the overexcavation gap is the root cause of pipe sticking; moreover, the number of jacked pipe strings matching a single IJS is the second cause of pipe string sticking. The methodology of this study can provide a reference for other studies concerning the jacking force of long-distance rock microshield tunnelling.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xian Yang ◽  
Yang Liu ◽  
Chao Yang

When the pipe jacking technology is applied in expansive formation, the soil around the pipe will easily absorb water from the slurry and expand to wrap up the pipe, producing an excessive pipe jacking force. A water-based slurry formula suitable for pipe jacking in expansive soil layer was proposed in this paper. Firstly, the key design points of pipe jacking slurry in expansive soil were put forward. Secondly, plant glue, potassium humate, Na-CMC, and graphite powder were chosen as treating agents to improve the slurry performance. The effect of addition levels of different treating agents on the funnel viscosity, filter loss, expansion ratio, friction coefficient and water dissociation rate of the slurry were tested. Thirdly, based on the results of single-factor tests, a water-based slurry formula suitable for pipe jacking in expansive soil was obtained. Finally, the slurry formula was applied in a practical pipe jacking project in expansive formation, and the jacking force was controlled well in the whole jacking process. The new water-based slurry is cheap and practical and has no pollution to environment. Furthermore, a simple and practical calculating method of the pipe jacking force was presented. The comparison of the calculated and measured pipe jacking force shows that the simple calculating method can estimate the jacking force well. Improving slurry performance to reduce jacking force in pipe jacking and predicting pipe jacking force accurately can help reducing the investment for counterforce wall and jacking system in pipe jacking engineering.


Author(s):  
Xiaoming Lou ◽  
Mingwu Sun ◽  
Jin Yu

AbstractThe fissures are ubiquitous in deep rock masses, and they are prone to instability and failure under dynamic loads. In order to study the propagation attenuation of dynamic stress waves in rock mass with different number of fractures under confining pressure, nonlinear theoretical analysis, indoor model test and numerical simulation are used respectively. The theoretical derivation is based on displacement discontinuity method and nonlinear fissure mechanics model named BB model. Using ABAQUS software to establish a numerical model to verify theoretical accuracy, and indoor model tests were carried out too. The research shows that the stress attenuation coefficient decreases with the increase of the number of fissures. The numerical simulation results and experimental results are basically consistent with the theoretical values, which verifies the rationality of the propagation equation.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


Sign in / Sign up

Export Citation Format

Share Document