scholarly journals Cold-formed steel sections with web openings subjected to web crippling under two-flange loading conditions—part I: Tests and finite element analysis

2012 ◽  
Vol 56 ◽  
pp. 38-48 ◽  
Author(s):  
Asraf Uzzaman ◽  
James B.P Lim ◽  
David Nash ◽  
Jim Rhodes ◽  
Ben Young
2020 ◽  
Vol 41 (1) ◽  
Author(s):  
Apai Benchaphong ◽  
Rattanasak Hongthong ◽  
Sutera Benchanukrom ◽  
Nirut Konkong

The purpose of this research was to study the behavior of cold-formed steel cantilever truss structures. A cantilever truss structure and bolt-moment connection were tested and verified by the 3D-finite element model. The verification results showed a good correlation between an experimental test and finite element analysis. An analytical method for elastic rotational stiffness of bolt-moment connection was proposed. The equation proposed in the analytical method was used to approximate the elastic rotational stiffness of the bolt group connection, and was also applied to the Richard-Abbott model for generating the nonlinear moment-rotation curve which modeled the semi-rigid connection stiffness. The 2D-finite element analysis was applied to study the behavior of the truss connection, caused by semi-rigid connection stiffness which caused a change of force to the truss elements. The results showed that the force in the structural members increased by between 13.62%-74.32% of the axial forces, and the bending moment decreased by between 33.05%-100%. These results strongly suggest that the semi-rigid connection between cold-formed steel cantilever truss structures should be considered in structural analysis to achieve optimum design, acknowledging this as the real behavior of the structure.


Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


Sign in / Sign up

Export Citation Format

Share Document