Circular concrete filled thin-walled steel tubes under pure torsion: Experiments

2021 ◽  
Vol 164 ◽  
pp. 107874
Author(s):  
Khanh Ba Le ◽  
Vui Van Cao ◽  
Hung Xuan Cao
Keyword(s):  
2007 ◽  
Vol 45 (1) ◽  
pp. 24-36 ◽  
Author(s):  
Lin-Hai Han ◽  
Guo-Huang Yao ◽  
Zhong Tao
Keyword(s):  

2018 ◽  
Vol 8 (9) ◽  
pp. 1602 ◽  
Author(s):  
Zhao Yang ◽  
Chengxiang Xu

Local buckling in steel tubes was observed to be capable of reducing the ultimate loads of thin-walled concrete-filled steel-tube (CFST) columns under axial compression. To strengthen the steel tubes, steel bars were proposed in this paper to be used as stiffeners fixed onto the tubes. Static-loading tests were conducted to study the compression behavior of square thin-walled CFST columns with steel bar stiffeners placed inside or outside the tube. The effect and feasibility of steel bar stiffeners were studied through the analysis of failure mode, load–displacement relationship, ultimate load, ductility, and local buckling. Different setting methods of steel bars were compared as well. The results showed that steel-bar stiffeners proposed in this paper can be effective in delaying local buckling as well as increasing the bearing capacity of the columns, but will decrease the ductility of the columns. In order to obtain a higher bearing capacity of columns, steel bars with low stiffness should be placed inside and steel bars with high stiffness should be placed outside of the steel tubes. The study is helpful in providing reference to the popularization and application of this new structural measure to avoid or delay the local buckling of thin-walled CFST columns.


1956 ◽  
Vol 60 (541) ◽  
pp. 65-66 ◽  
Author(s):  
V. Cadambe ◽  
S. Krishnan

In a recent paper the authors suggested that the minimum weight design of thin-walled cells in combined bending and torsion could be tackled by using the well-known concept of equivalent bending moment and torque. It is now felt that a more rational approach would be to base the analysis on the buckling behaviour of the walls of the cell under combined compression and shear and choose the dimensions such that the cell will just resist buckling. The second criterion for design is taken as a limit on the twist as adapted in the case of pure torsion. Two types of sections, rectangular and circular, are discussed in this note.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
J. Wainstein ◽  
J. Perez Ipiña

Coiled Tubings are thin walled steel tubes of 25–89 mm diameter and thousands meters long, used in the oil industry for production and maintenance services. They suffer plastic deformation during unwinding of the reel, passing through a goosneck arch guide and an injector unit. Strain levels are of 2–3%, making the tubing fail by low cycle fatigue in around 100 wrap–unwrap cycles. As coiled tubing material generally behaves in a ductile manner at surface and down well temperatures, the R curve has to be known to make instability analyses. J-R curves were determined to characterize the fracture toughness of nonused coiled tubing, using nonstandard specimens due to difficulties with their small thickness and diameters. Different crack lengths and crack locations were tested to analyze the 2C0/W ratio and the influence of the longitudinal weld. The R curves obtained show crack arc length dependence and are influenced by the position of the longitudinal weld.


Sign in / Sign up

Export Citation Format

Share Document