scholarly journals Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source

2018 ◽  
Vol 186 ◽  
pp. 128-138 ◽  
Author(s):  
F. Houdellier ◽  
G.M. Caruso ◽  
S. Weber ◽  
M. Kociak ◽  
A. Arbouet
Author(s):  
M. Iwatsuki ◽  
Y. Kokubo ◽  
Y. Harada

On accout of its high brightness, small optical source size, and minimal energy spread, the field emission gun (FEG) has the advantage that it provides the conventional transmission electron microscope (TEM) with a highly coherent illumination system and directly improves the resolving power and signal-to-noise ratio of the scanning electron microscope (SEM). The FEG is generally classified into two types; the cold field emission (C-FEG) and thermal field emission gun (T-FEG). The former, in which a field emitter is used at the room temperature, was successfully developed as an electron source for the SEM. The latter, in which the emitter is heated to the temperature range of 1000-1800°K, was also proved to be very suited as an electron source for the TEM, as well as for the SEM. Some characteristics of the two types of the FEG have been studied and reported by many authors. However, the results of the respective types have been obtained separately under different experimental conditions.


Author(s):  
W. T. Pike

With the advent of crystal growth techniques which enable device structure control at the atomic level has arrived a need to determine the crystal structure at a commensurate scale. In particular, in epitaxial lattice mismatched multilayers, it is of prime importance to know the lattice parameter, and hence strain, in individual layers in order to explain the novel electronic behavior of such structures. In this work higher order Laue zone (holz) lines in the convergent beam microdiffraction patterns from a thermal emission transmission electron microscope (TEM) have been used to measure lattice parameters to an accuracy of a few parts in a thousand from nanometer areas of material.Although the use of CBM to measure strain using a dedicated field emission scanning transmission electron microscope has already been demonstrated, the recording of the diffraction pattern at the required resolution involves specialized instrumentation. In this work, a Topcon 002B TEM with a thermal emission source with condenser-objective (CO) electron optics is used.


2009 ◽  
Vol 24 (8) ◽  
pp. 2638-2643 ◽  
Author(s):  
Kai-Jheng Wang ◽  
Yan-Zuo Tsai ◽  
Jenq-Gong Duh ◽  
Toung-Yi Shih

An Sn-patch formed in Ni(V)-based under bump metallization during reflow and aging. To elucidate the evolution of the Sn-patch, the detailed compositions and microstructure in Sn–Ag–Cu and Ti/Ni(V)/Cu joints were analyzed by a field emission electron probe microanalyzer (EPMA) and transmission electron microscope (TEM), respectively. There existed a concentration redistribution in the Sn-patch, and its microstructure also varied with aging. The Sn-patch consisted of crystalline Ni and an amorphous Sn-rich phase after reflow, whereas V2Sn3 formed with amorphous an Sn-rich phase during aging. A possible formation mechanism of the Sn-patch was proposed.


Microscopy ◽  
2020 ◽  
Vol 69 (6) ◽  
pp. 411-416
Author(s):  
Tetsuya Akashi ◽  
Yoshio Takahashi ◽  
Ken Harada

Abstract We have developed an amplitude-division type Mach-Zehnder electron interferometer (MZ-EI). The developed MZ-EI is composed of single crystals corresponding to amplitude-division beam splitters, lenses corresponding to mirrors and an objective aperture. The spacings and azimuth angles of interference fringes can be controlled by single crystal materials and their orientations and by diffraction spots selected by the objective aperture. We built the MZ-EI on a 1.2-MV field-emission transmission electron microscope and tested its performance. Results showed that interference fringes were created for various spacings and azimuth angles, which demonstrates the practicability of the MZ-EI as an amplitude-division type electron interferometer.


2019 ◽  
Vol 202 ◽  
pp. 107-113 ◽  
Author(s):  
Takeshi Kawasaki ◽  
Tetsuya Akashi ◽  
Keigo Kasuya ◽  
Hiroyuki Shinada

Sign in / Sign up

Export Citation Format

Share Document