Ultrasonic Characteristics and Cellular Properties of  Anabaena Gas Vesicles

2017 ◽  
Vol 43 (12) ◽  
pp. 2862-2870 ◽  
Author(s):  
Yaoheng Yang ◽  
Zhihai Qiu ◽  
Xuandi Hou ◽  
Lei Sun
Keyword(s):  
2021 ◽  
Vol 8 ◽  
Author(s):  
Sing-how Tuo ◽  
Margaret R. Mulholland ◽  
Yukiko Taniuchi ◽  
Houng-Yung Chen ◽  
Wann-Neng Jane ◽  
...  

Calothrix rhizosoleniae and Richelia intracellularis are heterocystous cyanobacteria found in the tropical oceans. C. rhizosoleniae commonly live epiphytically on diatom genera Chaetoceros (C-C) and Bacteriastrum (B-C) while R. intracellularis live endosymbiotically within Rhizosolenia (R-R), Guinardia (G-R), and Hemiaulus (H-R); although, they occasionally live freely (FL-C and FL-R). Both species have much shorter trichomes than the other marine filamentous cyanobacteria such as Trichodesmium spp. and Anabaena gerdii. We investigated the trichome lengths of C. rhizosoleniae and R. intracellularis in the South China Sea (SCS) and the Philippine Sea (PS) between 2006 and 2014. On average, H-R had the shortest trichome lengths (3.5 cells/trichome), followed by B-C and C-C (4.9–5.2 cells/trichome) and FL-C (5.9 cells/trichome), and R-R, G-R, and FL-R had the longest trichome lengths (7.4–8.3 cells/trichome). Field results showed the trichome lengths of C-C and B-C did not vary seasonally or regionally. However, FL-C and H-R from the SCS and during the cool season had longer trichomes, where/when the ambient nutrient concentrations were higher. R-R, G-R, and FL-R also showed regional and seasonal variations in trichome length. Ultrastructural analysis found no gas vesicles within the C. rhizosoleniae cells to assist in buoyancy regulation. Results suggest that the trichome lengths of C. rhizosoleniae and R. intracellularis might be regulated by their diatom hosts’ symbiotic styles and by ambient nutrients. Short trichome length might help C. rhizosoleniae and R. intracellularis to stay in the euphotic zone regardless as to whether they are free-living or symbiotic.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Matthew J. Harke ◽  
Jennifer G. Jankowiak ◽  
Brooke K. Morrell ◽  
Christopher J. Gobler

ABSTRACT The bloom-forming, toxic cyanobacterium Microcystis synthesizes multiple secondary metabolites and has been shown to deter zooplankton grazing. However, the biochemical and/or molecular basis by which Microcystis deters zooplankton remains unclear. This global transcriptomic study explored the response of Microcystis to direct and indirect exposures to multiple densities of two cladoceran grazers, Daphnia pulex and D. magna. Higher densities of both daphnids significantly reduced Microcystis cell densities and elicited a stronger transcriptional response in Microcystis. While many putative grazer deterrence genes (encoding microcystin, aeruginosin, cyanopeptolin, and microviridin) were largely unaffected by zooplankton, transcripts for heat shock proteins (hsp) increased in abundance. Beyond metabolites and hsp, large increases in the abundances of transcripts from photosynthetic processes were observed, evidencing energy acquisition pathways were stimulated by grazing. In addition, transcripts of genes associated with the production of extracellular polysaccharides and gas vesicles significantly increased in abundance. These genes have been associated with colony formation and may have been invoked to deter grazers. Collectively, this study demonstrates that daphnid grazers induce a significant transcriptomic response in Microcystis, suggesting this cyanobacterium upregulates specific biochemical pathways to adapt to predation. IMPORTANCE This work explores the transcriptomic responses of Microcystis aeruginosa following exposure to grazing by two cladocerans, Daphnia magna and D. pulex. Contrary to previous hypotheses, Microcystis did not employ putative grazing deterrent secondary metabolites in response to the cladocerans, suggesting they may have other roles within the cell, such as oxidative stress protection. The transcriptional metabolic signature during intense grazing was largely reflective of a growth and stress response, although increasing abundances of transcripts encoding extracellular polysaccharides and gas vesicles were potentially related to predator avoidance.


1977 ◽  
Vol 112 (2) ◽  
pp. 133-140 ◽  
Author(s):  
A. E. Konopka ◽  
J. C. Lara ◽  
J. T. Staley

2021 ◽  
Vol 28 ◽  
Author(s):  
Rui Wang ◽  
Li Zhang ◽  
Mingxing Xie ◽  
Lufang Wang ◽  
Qiaofeng Jin ◽  
...  

: Ultrasound is not only the most widely used medical imaging mode for diagnostics owing to its real-time, non-radiation, portable, and low-cost merits, but also a promising targeted drug/gene delivery technique by exhibiting a series of powerful bioeffects. The development of micron-sized or nanometer-sized ultrasound agents or delivery carriers further makes ultrasound a distinctive modality in accurate diagnosis and effective treatment. In this review, we introduce one kind of unique biogenic gas-filled protein nanostructures called gas vesicles, presenting some unique characteristics than the conventional microbubbles. Gas vesicles can not only serve as ultrasound contrast agents with innovative imaging methods such as cross-amplitude modulation harmonic imaging but also can further be adjusted and optimized via genetic engineering techniques. Moreover, they could not only serve as acoustic gene reporters, acoustic biosensors to monitor the cell metabolism, but also serve as cavitation nuclei and drug carriers for therapeutic purposes. In this study, we focus on the latest development and applications in the area of ultrasound imaging and targeted therapeutics, and also provide a brief introduction of the corresponding mechanisms. In summary, these biogenic gas vesicles show some advantages over conventional MBs that deserve more efforts to promote their development.


2006 ◽  
Vol 14 (3) ◽  
pp. 99-100 ◽  
Author(s):  
Anthony E. Walsby ◽  
Peter G. Dunton
Keyword(s):  

Optik ◽  
2020 ◽  
Vol 216 ◽  
pp. 164835 ◽  
Author(s):  
Jiajin Li ◽  
Ran Liao ◽  
Yi Tao ◽  
Zhidi Liu ◽  
Yong Wang ◽  
...  

2004 ◽  
Vol 186 (10) ◽  
pp. 3182-3186 ◽  
Author(s):  
Hem Dutt Shukla ◽  
Shiladitya DasSarma

ABSTRACT The genome of Halobacterium sp. strain NRC-1 contains a large gene cluster, gvpMLKJIHGFEDACNO, that is both necessary and sufficient for the production of buoyant gas-filled vesicles. Due to the resistance of gas vesicles to solubilization, only the major gas vesicle protein GvpA and a single minor protein, GvpC, were previously detected. Here, we used immunoblotting analysis to probe for the presence of gas vesicle proteins corresponding to five additional gvp gene products. Polyclonal antisera were raised in rabbits against LacZ-GvpF, -GvpJ, and -GvpM fusion proteins and against synthetic 15-amino-acid peptides from GvpG and -L. Immunoblotting analysis was performed on cell lysates of wild-type Halobacterium sp. strain NRC-1, gas vesicle-deficient mutants, and purified gas vesicles, after purification of LacZ fusion antibodies on protein A and β-galactosidase affinity columns. Our results show the presence of five new gas vesicle proteins (GvpF, GvpG, GvpJ, GvpL, and GvpM), bringing the total number of proteins identified in the organelles to seven. Two of the new gas vesicle proteins are similar to GvpA (GvpJ and GvpM), and two proteins contain predicted coiled-coil domains (GvpF and GvpL). GvpL exhibited a multiplet ladder on sodium dodecyl sulfate-polyacrylamide gels indicative of oligomerization and self-assembly. We discuss the possible functions of the newly discovered gas vesicle proteins in biogenesis of these unique prokaryotic flotation organelles.


Sign in / Sign up

Export Citation Format

Share Document