scholarly journals Transcriptomic Responses in the Bloom-Forming Cyanobacterium Microcystis Induced during Exposure to Zooplankton

2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Matthew J. Harke ◽  
Jennifer G. Jankowiak ◽  
Brooke K. Morrell ◽  
Christopher J. Gobler

ABSTRACT The bloom-forming, toxic cyanobacterium Microcystis synthesizes multiple secondary metabolites and has been shown to deter zooplankton grazing. However, the biochemical and/or molecular basis by which Microcystis deters zooplankton remains unclear. This global transcriptomic study explored the response of Microcystis to direct and indirect exposures to multiple densities of two cladoceran grazers, Daphnia pulex and D. magna. Higher densities of both daphnids significantly reduced Microcystis cell densities and elicited a stronger transcriptional response in Microcystis. While many putative grazer deterrence genes (encoding microcystin, aeruginosin, cyanopeptolin, and microviridin) were largely unaffected by zooplankton, transcripts for heat shock proteins (hsp) increased in abundance. Beyond metabolites and hsp, large increases in the abundances of transcripts from photosynthetic processes were observed, evidencing energy acquisition pathways were stimulated by grazing. In addition, transcripts of genes associated with the production of extracellular polysaccharides and gas vesicles significantly increased in abundance. These genes have been associated with colony formation and may have been invoked to deter grazers. Collectively, this study demonstrates that daphnid grazers induce a significant transcriptomic response in Microcystis, suggesting this cyanobacterium upregulates specific biochemical pathways to adapt to predation. IMPORTANCE This work explores the transcriptomic responses of Microcystis aeruginosa following exposure to grazing by two cladocerans, Daphnia magna and D. pulex. Contrary to previous hypotheses, Microcystis did not employ putative grazing deterrent secondary metabolites in response to the cladocerans, suggesting they may have other roles within the cell, such as oxidative stress protection. The transcriptional metabolic signature during intense grazing was largely reflective of a growth and stress response, although increasing abundances of transcripts encoding extracellular polysaccharides and gas vesicles were potentially related to predator avoidance.

2011 ◽  
Vol 77 (15) ◽  
pp. 5149-5156 ◽  
Author(s):  
Sara Salvetti ◽  
Karoline Faegri ◽  
Emilia Ghelardi ◽  
Anne-Brit Kolstø ◽  
Sonia Senesi

ABSTRACTBacillus cereuscan use swarming to move over and colonize solid surfaces in different environments. This kind of motility is a collective behavior accompanied by the production of long and hyperflagellate swarm cells. In this study, the genome-wide transcriptional response ofB. cereusATCC 14579 during swarming was analyzed. Swarming was shown to trigger the differential expression (>2-fold change) of 118 genes. Downregulated genes included those required for basic cellular metabolism. In accordance with the hyperflagellate phenotype of the swarm cell, genes encoding flagellin were overexpressed. Some genes associated with K+transport, phBC6A51 phage genes, and the binding component of the enterotoxin hemolysin BL (HBL) were also induced. Quantitative reverse transcription-PCR (qRT-PCR) experiments indicated an almost 2-fold upregulation of the entirehbloperon during swarming. Finally, BC1435 and BC1436, orthologs ofliaI-liaHthat are known to be involved in the resistance ofBacillus subtilisto daptomycin, were upregulated under swarming conditions. Accordingly, phenotypic assays showed reduced susceptibility of swarmingB. cereuscells to daptomycin, and Pspac-induced hyper-expression of these genes in liquid medium highlighted the role of BC1435 and BC1436 in the response ofB. cereusto daptomycin.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Jake J. Flood ◽  
Shelley D. Copley

ABSTRACTPentachlorophenol (PCP) is a highly toxic pesticide that was first introduced in the 1930s. The alphaproteobacteriumSphingobium chlorophenolicum, which was isolated from PCP-contaminated sediment, has assembled a metabolic pathway capable of completely degrading PCP. This pathway produces four toxic intermediates, including a chlorinated benzoquinone that is a potent alkylating agent and three chlorinated hydroquinones that react with O2to produce reactive oxygen species (ROS). RNA-seq analysis revealed that PCP causes a global stress response that resembles responses to proton motive force uncoupling and membrane disruption, while surprisingly, little of the response resembles the responses expected to be produced by the PCP degradation intermediates. Tn-seq was used to identify genes important for fitness in the presence of PCP. By comparing the genes that are important for fitness in wild-typeS. chlorophenolicumand a non-PCP-degrading mutant, we identified genes that are important only when the PCP degradation intermediates are produced. These include genes encoding two enzymes that are likely to be involved in protection against ROS. In addition to these enzymes, the endogenous levels of other enzymes that protect cells from oxidative stress appear to mitigate the toxic effects of the chlorinated benzoquinone and hydroquinone metabolites of PCP. The combination of RNA-seq and Tn-seq results identify important mechanisms for defense against the toxicity of PCP.IMPORTANCEPhenolic compounds such as pentachlorophenol (PCP), triclosan, and 2,4-dichlorophenoxyacetic acid (2,4-D) represent a common class of anthropogenic biocides. Despite the novelty of these compounds, many can be degraded by microbes isolated from contaminated sites. However, degradation of this class of chemicals often generates toxic intermediates, which may contribute to their recalcitrance to biodegradation. We have addressed the stresses associated with degradation of PCP bySphingobium chlorophenolicumby examining the transcriptional response after PCP exposure and identifying genes necessary for growth during both exposure to and degradation of PCP. This work identifies some of the mechanisms that protect cells from this toxic compound and facilitate its degradation. This information could be used to engineer strains capable of improved biodegradation of PCP or similar phenolic pollutants.


2010 ◽  
Vol 9 (6) ◽  
pp. 915-925 ◽  
Author(s):  
César M. Camilo ◽  
Suely L. Gomes

ABSTRACT Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly downregulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe2+ ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1α, caused a significant decrease in the levels of certain upregulated hypoxic genes.


2018 ◽  
Vol 86 (6) ◽  
Author(s):  
Wanbing Liu ◽  
Yafang Tan ◽  
Shiyang Cao ◽  
Haihong Zhao ◽  
Haihong Fang ◽  
...  

ABSTRACTRecent studies revealed that acetylation is a widely used protein modification in prokaryotic organisms. The major protein acetylation acetyltransferase YfiQ and the sirtuin-like deacetylase CobB have been found to be involved in basic physiological processes, such as primary metabolism, chemotaxis, and stress responses, inEscherichia coliandSalmonella. However, little is known about protein acetylation modifications inYersinia pestis, a lethal pathogen responsible for millions of human deaths in three worldwide pandemics. Here we found thatYp_0659andYp_1760ofY. pestisencode the major protein acetylation acetyltransferase YfiQ and the sirtuin-like deacetylase CobB, respectively, which can acetylate and deacetylate PhoP enzymaticallyin vitro. Protein acetylation impairment incobBandyfiQmutants greatly decreased bacterial tolerance to cold, hot, high-salt, and acidic environments. Our comparative transcriptomic data revealed that the strongly decreased tolerance to stress stimuli was probably related to downregulation of the genes encoding the heat shock proteins (HtpG, HslV, HslR, and IbpA), cold shock proteins (CspC and CspA1), and acid resistance proteins (HdeB and AdiA). We found that the reversible acetylation mediated by CobB and YfiQ conferred attenuation of virulence, probably partially due to the decreased expression of thepsaABCDEFoperon, which encodes Psa fimbriae that play a key role in virulence ofY. pestis. This is the first report, to our knowledge, on the roles of protein acetylation modification in stress responses, biofilm formation, and virulence ofY. pestis.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 298
Author(s):  
Despoina Konstantinou ◽  
Rafael V. Popin ◽  
David P. Fewer ◽  
Kaarina Sivonen ◽  
Spyros Gkelis

Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Elizabeth W Hunsaker ◽  
Chen-Hsin Albert Yu ◽  
Katherine J Franz

Abstract The ability of pathogens to maintain homeostatic levels of essential biometals is known to be important for survival and virulence in a host, which itself regulates metal availability as part of its response to infection. Given this importance of metal homeostasis, we sought to address how the availability of copper in particular impacts the response of the opportunistic fungal pathogen Candida albicans to treatment with the antifungal drug fluconazole. The present study reports whole transcriptome analysis via time-course RNA-seq of C. albicans cells exposed to fluconazole with and without 10 µM supplemental CuSO4 added to the growth medium. The results show widespread impacts of small changes in Cu availability on the transcriptional response of C. albicans to fluconazole. Of the 2359 genes that were differentially expressed under conditions of cotreatment, 50% were found to be driven uniquely by exposure to both Cu and fluconazole. The breadth of metabolic processes that were affected by cotreatment illuminates a fundamental intersectionality between Cu metabolism and fungal response to drug stress. More generally, these results show that seemingly minor fluctuations in Cu availability are sufficient to shift cells’ transcriptional response to drug stress. Ultimately, the findings may inform the development of new strategies that capitalize on drug-induced vulnerabilities in metal homeostasis pathways.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin G. Sanchez ◽  
Micah J. Ferrell ◽  
Alexandra E. Chirakos ◽  
Kathleen R. Nicholson ◽  
Robert B. Abramovitch ◽  
...  

ABSTRACT Pathogenic mycobacteria encounter multiple environments during macrophage infection. Temporally, the bacteria are engulfed into the phagosome, lyse the phagosomal membrane, and interact with the cytosol before spreading to another cell. Virulence factors secreted by the mycobacterial ESX-1 (ESAT-6-system-1) secretion system mediate the essential transition from the phagosome to the cytosol. It was recently discovered that the ESX-1 system also regulates mycobacterial gene expression in Mycobacterium marinum (R. E. Bosserman, T. T. Nguyen, K. G. Sanchez, A. E. Chirakos, et al., Proc Natl Acad Sci U S A 114:E10772–E10781, 2017, https://doi.org/10.1073/pnas.1710167114), a nontuberculous mycobacterial pathogen, and in the human-pathogenic species M. tuberculosis (A. M. Abdallah, E. M. Weerdenburg, Q. Guan, R. Ummels, et al., PLoS One 14:e0211003, 2019, https://doi.org/10.1371/journal.pone.0211003). It is not known how the ESX-1 system regulates gene expression. Here, we identify the first transcription factor required for the ESX-1-dependent transcriptional response in pathogenic mycobacteria. We demonstrate that the gene divergently transcribed from the whiB6 gene and adjacent to the ESX-1 locus in mycobacterial pathogens encodes a conserved transcription factor (MMAR_5438, Rv3863, now espM). We prove that EspM from both M. marinum and M. tuberculosis directly and specifically binds the whiB6-espM intergenic region. We show that EspM is required for ESX-1-dependent repression of whiB6 expression and for the regulation of ESX-1-associated gene expression. Finally, we demonstrate that EspM functions to fine-tune ESX-1 activity in M. marinum. Taking the data together, this report extends the esx-1 locus, defines a conserved regulator of the ESX-1 virulence pathway, and begins to elucidate how the ESX-1 system regulates gene expression. IMPORTANCE Mycobacterial pathogens use the ESX-1 system to transport protein substrates that mediate essential interactions with the host during infection. We previously demonstrated that in addition to transporting proteins, the ESX-1 secretion system regulates gene expression. Here, we identify a conserved transcription factor that regulates gene expression in response to the ESX-1 system. We demonstrate that this transcription factor is functionally conserved in M. marinum, a pathogen of ectothermic animals; M. tuberculosis, the human-pathogenic species that causes tuberculosis; and M. smegmatis, a nonpathogenic mycobacterial species. These findings provide the first mechanistic insight into how the ESX-1 system elicits a transcriptional response, a function of this protein transport system that was previously unknown.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Matthew J. Bush ◽  
Maureen J. Bibb ◽  
Govind Chandra ◽  
Kim C. Findlay ◽  
Mark J. Buttner

ABSTRACTWhiA is a highly unusual transcriptional regulator related to a family of eukaryotic homing endonucleases. WhiA is required for sporulation in the filamentous bacteriumStreptomyces, but WhiA homologues of unknown function are also found throughout the Gram-positive bacteria. To better understand the role of WhiA inStreptomycesdevelopment and its function as a transcription factor, we identified the WhiA regulon through a combination of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray transcriptional profiling, exploiting a new model organism for the genus,Streptomyces venezuelae, which sporulates in liquid culture. The regulon encompasses ~240 transcription units, and WhiA appears to function almost equally as an activator and as a repressor. Bioinformatic analysis of the upstream regions of the complete regulon, combined with DNase I footprinting, identified a short but highly conserved asymmetric sequence, GACAC, associated with the majority of WhiA targets. Construction of a null mutant showed thatwhiAis required for the initiation of sporulation septation and chromosome segregation inS. venezuelae, and several genes encoding key proteins of theStreptomycescell division machinery, such asftsZ,ftsW, andftsK, were found to be directly activated by WhiA during development. Several other genes encoding proteins with important roles in development were also identified as WhiA targets, including the sporulation-specific sigma factor σWhiGand the diguanylate cyclase CdgB. Cell division is tightly coordinated with the orderly arrest of apical growth in the sporogenic cell, andfilP, encoding a key component of the polarisome that directs apical growth, is a direct target for WhiA-mediated repression during sporulation.IMPORTANCESince the initial identification of the genetic loci required forStreptomycesdevelopment, all of thebldandwhidevelopmental master regulators have been cloned and characterized, and significant progress has been made toward understanding the cell biological processes that drive morphogenesis. A major challenge now is to connect the cell biological processes and the developmental master regulators by dissecting the regulatory networks that link the two. Studies of these regulatory networks have been greatly facilitated by the recent introduction ofStreptomyces venezuelaeas a new model system for the genus, a species that sporulates in liquid culture. Taking advantage ofS. venezuelae, we have characterized the regulon of genes directly under the control of one of these master regulators, WhiA. Our results implicate WhiA in the direct regulation of key steps in sporulation, including the cessation of aerial growth, the initiation of cell division, and chromosome segregation.


2015 ◽  
Vol 36 (6) ◽  
pp. 913-922 ◽  
Author(s):  
Nallani Vijay Kumar ◽  
Jianbo Yang ◽  
Jitesh K. Pillai ◽  
Swati Rawat ◽  
Carlos Solano ◽  
...  

The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.


2014 ◽  
Vol 81 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Bhagyalakshmi Kalidass ◽  
Muhammad Farhan Ul-Haque ◽  
Bipin S. Baral ◽  
Alan A. DiSpirito ◽  
Jeremy D. Semrau

ABSTRACTIt is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that inMethylosinus trichosporiumOB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced byM. trichosporiumOB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and activein situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin.


Sign in / Sign up

Export Citation Format

Share Document