Identification of a c-kit exon 8 internal tandem duplication in a feline mast cell tumor case and its favorable response to the tyrosine kinase inhibitor imatinib mesylate

2006 ◽  
Vol 114 (1-2) ◽  
pp. 168-172 ◽  
Author(s):  
Mayu Isotani ◽  
Kyoichi Tamura ◽  
Hiroko Yagihara ◽  
Michiko Hikosaka ◽  
Kenichiro Ono ◽  
...  
Blood ◽  
2001 ◽  
Vol 98 (3) ◽  
pp. 885-887 ◽  
Author(s):  
Mark Levis ◽  
Kam-Fai Tse ◽  
B. Douglas Smith ◽  
Elizabeth Garrett ◽  
Donald Small

Abstract Internal tandem duplication (ITD) mutations of the receptor tyrosine kinase FLT3 have been found in 20% to 30% of patients with acute myeloid leukemia (AML). These mutations constitutively activate the receptor and appear to be associated with a poor prognosis. Recent evidence that this constitutive activation is leukemogenic renders this receptor a potential target for specific therapy. In this study, dose-response cytotoxic assays were performed with AG1295, a tyrosine kinase inhibitor active against FLT3, on primary blasts from patients with AML. For each patient sample, the degree of cytotoxicity induced by AG1295 was compared to the response to cytosine arabinoside (Ara C) and correlated with the presence or absence of a FLT3/ITD mutation. AG1295 was specifically cytotoxic to AML blasts harboring FLT3/ITD mutations. The results suggest that these mutations contribute to the leukemic process and that the FLT3 receptor represents a therapeutic target in AML.


2018 ◽  
Vol 25 (4) ◽  
pp. 972-974 ◽  
Author(s):  
Andrew Hwang ◽  
Andrew Iskandar ◽  
Michael del Rosario ◽  
Constantin A Dasanu

Imatinib mesylate is a tyrosine kinase inhibitor used in the treatment of several malignancies. Its use, however, is associated with a number of toxic effects including adverse cutaneous reactions. Herein, we present a case of facial cystic acne in a patient receiving imatinib therapy for chronic myelocytic leukemia. This side effect resolved with cessation of therapy. To the best of our knowledge, this clinical entity has never been previously reported in the medical literature.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3352-3352
Author(s):  
Klaus Podar ◽  
Melissa Simoncini ◽  
Yu-Tzu Tai ◽  
Martin Sattler ◽  
Kenji Ishitsuka ◽  
...  

Abstract The tyrosine kinase inhibitor adaphostin is a member of the tyrophostin family of small molecules that interfere with peptide binding rather, than targeting the kinase ATP-binding site. Adaphostin has therefore been examined as an alternative to the 2-phenylaminopyrimidine derivate imatinib mesylate, with remarkable efficacy in the treatment of chronic myeloic leukemia (CML). Previous studies show that adaphostin induces apoptosis: (1) in Bcr/Abl+ cells more rapidly than imatinib mesylate; (2) in imatinib mesylate resistant cells; and (3) in Bcr/ Abl - cells. Imatinib mesylate has minimal, if any activity in MM; the efficacy of adaphostin in multiple myeloma (MM) is unknown. Here we compare the effects of adaphostin and imatinib mesylate against human MM cells. Our results show concentration-dependent apoptosis in MM.1S, U266, OPM-2, INA-6, RPMI8226 and RPMI-Dox40 MM cells after treatment with adaphostin, but not with imatinib mesylate. Imatinib mesylate induced more than 50% apoptosis in K562 cells using concentrations as low as 1mM, which served as a positive control. Moreover, adaphostin, but not imatinib mesylate, induced caspase-9, caspase-8, and PARP cleavage, as well as downregulation of Mcl-1, in MM cells. Further results demonstrated that adaphostin induces peroxide production and DNA strand breaks after long-term treatment. Importantly MM cell proliferation induced by MM cell binding to BMSCs was abrogated by adaphostin- treatment. IL-6 and IGF-1 signaling and sequelae triggered by these cytokines are important growth, survival, and drug resistance factors in MM; conversely, adaphostin but not imatinib mesylate, inhibited phosphorylation of Src tyrosine kinase family, Akt-1, and ERK. Taken together, our studies in MM cells show that (1) adaphostin- inhibits IGF-1- and IL-6- triggered signaling pathways as well as (2) induces reactive oxygen species and apoptosis. These studies therefore provide the preclinical framework for its clinical evaluation to improve patient outcome in MM.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3528-3528 ◽  
Author(s):  
Srdan Verstovsek ◽  
Cem Akin ◽  
Giles J. Francis ◽  
Manshouri Taghi ◽  
Ly Huynh ◽  
...  

Abstract Background. Majority of adult patients with systemic mastocytosis (SM) have activating mutation in codon 816 of c-kit (CD117), a receptor on the surface of mast cells. This abnormality is responsible for the pathogenesis of the disease. Methods. We investigated the effects of a newly designed tyrosine kinase inhibitor, AMN107, by comparing its in vitro inhibitory potency on c-kit mutated mast cell lines and patient samples with that of imatinib mesylate, another tyrosine kinase inhibitor, effective in some patients with SM. Two cell lines, subclones of HMC-1 cells, were used: HMC-1560 carrying juxtamembrane domain mutation in codon 560 of c-kit, and HMC-1560, 816 carrying both codon 560 mutation and tyrosine kinase domain mutation in codon 816 of c-kit. Results. In HMC-1560 mast cell line carrying wild-type codon 816, AMN107 was as potent as imatinib in inhibiting cellular proliferation, with IC50 values of 108 and 74 nM respectively, while in HMC-1560, 816 cell line carrying 816 mutation, neither medication had an effect. AMN107 was also as effective as imatinib in inhibiting phosphorylation of c-kit tyrosine kinase in HMC-1560 cells. The inhibition of cellular proliferation was associated with induction of apoptosis in HMC-1560 cells. AMN107 in concentrations up to 1 uM had no effect on bone marrow mast cells carrying D816V c-kit mutation obtained from patients with mastocytosis. Conclusions. Our results suggest similar potency of AMN107 and imatinib in mast cells that carry wild-type codon 816, but no activity against codon 816 mutation carrying cells.


2007 ◽  
Vol 44 (2) ◽  
pp. 225-228 ◽  
Author(s):  
F. Seeliger ◽  
O. Heß ◽  
M. Pröbsting ◽  
S. Kleinschmidt ◽  
T. Woehrmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document