scholarly journals Inhibition of the transforming activity of FLT3 internal tandem duplication mutants from AML patients by a tyrosine kinase inhibitor

Leukemia ◽  
2002 ◽  
Vol 16 (10) ◽  
pp. 2027-2036 ◽  
Author(s):  
K-F Tse ◽  
J Allebach ◽  
M Levis ◽  
BD Smith ◽  
FD Bohmer ◽  
...  
Blood ◽  
2001 ◽  
Vol 98 (3) ◽  
pp. 885-887 ◽  
Author(s):  
Mark Levis ◽  
Kam-Fai Tse ◽  
B. Douglas Smith ◽  
Elizabeth Garrett ◽  
Donald Small

Abstract Internal tandem duplication (ITD) mutations of the receptor tyrosine kinase FLT3 have been found in 20% to 30% of patients with acute myeloid leukemia (AML). These mutations constitutively activate the receptor and appear to be associated with a poor prognosis. Recent evidence that this constitutive activation is leukemogenic renders this receptor a potential target for specific therapy. In this study, dose-response cytotoxic assays were performed with AG1295, a tyrosine kinase inhibitor active against FLT3, on primary blasts from patients with AML. For each patient sample, the degree of cytotoxicity induced by AG1295 was compared to the response to cytosine arabinoside (Ara C) and correlated with the presence or absence of a FLT3/ITD mutation. AG1295 was specifically cytotoxic to AML blasts harboring FLT3/ITD mutations. The results suggest that these mutations contribute to the leukemic process and that the FLT3 receptor represents a therapeutic target in AML.


Blood ◽  
2014 ◽  
Vol 123 (6) ◽  
pp. 905-913 ◽  
Author(s):  
Erika K. Keeton ◽  
Kristen McEachern ◽  
Keith S. Dillman ◽  
Sangeetha Palakurthi ◽  
Yichen Cao ◽  
...  

Key Points AZD1208 is a selective pan-Pim kinase inhibitor with efficacy in AML cells, xenografts, and Flt3-internal tandem duplication or Flt3 wild-type patient samples. AML cell growth inhibition is associated with suppression of p70S6K, 4EBP1 phosphorylation, and messenger RNA translation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2514-2514
Author(s):  
Sabine Kayser ◽  
Richard F. Schlenk ◽  
Frank Breitenbücher ◽  
Martina Porebski ◽  
Kerstin Wittke ◽  
...  

Abstract Background: Activating FLT3 internal tandem duplication mutations (FLT3-ITDs) occur in approximately 30% of acute myeloid leukemia (AML) patients. Expression of the FLT3-ITD receptor results in autophosphorylation of FLT3 and subsequent activation of downstream signaling. Clinically, FLT3-ITDs are associated with a dismal clinical outcome; previous explorative analyses suggest that not only FLT3-ITD per se but also the mutant/wild-type allelic ratio and/or the length of the FLT3-ITD provide prognostic information. Aims: To determine ITD insertion sites and length in FLT3-ITD mutated AML and to correlate these findings with clinical outcome. Methods: In 241 patients, DNA-based amplification of the FLT3-ITD mutation was followed by DHPLC-based separation of FLT3 mutant and wild-type fragments. Single mutated fragments were collected by a fragment collector, reamplified and sequenced. Patients [16 to 60 years of age] were entered on 3 consecutive AMLSG treatment trials [AML HD93, AML HD98A, AMLSG 07-04] all including intensive therapy. Results: Thirty-four (14.1) of the 241 patients had more than one ITD (two ITDs n=29, three ITDs n=3, four ITDs n=2). In total, 282 ITDs were analyzed. The median length was 52 nucleotides (range 15–180). For further correlations we grouped ITD integration sites according to the functional regions of FLT3: JM-domain (JMD) [amino acid (AA) 572–603, patients n =141, ITDs n=148], hinge region of JMD [AA 604–609, patients n=45, ITDs n=48], beta-1-sheet of the tyrosine kinase domain-1 (TKD1) [AA 610–615, patients n=69, ITDs n=73], and the remaining region of TKD1 [AA >615, patients n=13, ITDs n=13]. Interestingly, ITD length was strongly correlated to functional regions with shortest ITDs being present in the JMD and longest in the TKD1 (p<0.001). Clinical data were available in 239 patients showing no differences in patient characteristics (age, WBC etc.); frequencies of cooperating class II mutations (NPM1-mut n=137, CEBPA-mut n=12, MLL-PTD n=21) were equally distributed among the functionally categorized groups. The logistic regression model on induction success (IS) revealed ITD integration sites in the beta-1-sheet (odds ratio (OR) 0.25, p=0.01) and in the remaining region of TKD1 (OR 0.14, p=0.007) as well as logarithm of WBC count (OR 0.36, p=0.002) and NPM1 mutations (OR 2.04, p=0.04) as significant variables. ITD insertion in the beta-1-sheet was also significant in the Cox regression analysis on overall survival (OS) (Hazard Ratio (HR) 2.7, p=0.01). In univariable analyses, event free survival (EFS) and OS were significantly inferior in patients with ITD in the beta-1-sheet (p=0.005 and p=0.001). Of note, the proportions of patients receiving an allogeneic transplantation were comparable in both groups (61% and 67%, respectively). In multivariable analyses, neither length of ITD nor mutant/wild-type allelic ratio had an impact on OS. Conclusions: FLT3-ITD insertion sites seems to be an important prognostic marker for induction failure, EFS and OS. Therefore, not only FLT3-ITD mutation status but also ITD integration site should be prospectively analyzed in future clinical trials, in particular in the context of treatment with FLT3-tyrosine kinase inhibitors.


Sign in / Sign up

Export Citation Format

Share Document