Whole inactivated equine influenza vaccine: Efficacy against a representative clade 2 equine influenza virus, IFNgamma synthesis and duration of humoral immunity

2013 ◽  
Vol 162 (2-4) ◽  
pp. 396-407 ◽  
Author(s):  
R. Paillot ◽  
L. Prowse ◽  
F. Montesso ◽  
C.M. Huang ◽  
H. Barnes ◽  
...  
Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 501 ◽  
Author(s):  
Sylvia Reemers ◽  
Denny Sonnemans ◽  
Linda Horspool ◽  
Sander van Bommel ◽  
Qi Cao ◽  
...  

Vaccination is an effective tool to limit equine influenza virus (EIV H3N8) infection, a contagious respiratory disease with potentially huge economic impact. The study assessed the effects of antigenic change on vaccine efficacy and the need for strain update. Horses were vaccinated (V1 and V2) with an ISCOMatrix-adjuvanted, whole inactivated virus vaccine (Equilis Prequenza, group 2, FC1 and European strains) or a carbomer-adjuvanted, modified vector vaccine (ProteqFlu, group 3, FC1 and FC2 HA genes). Serology (SRH, HI, VN), clinical signs and viral shedding were assessed in comparison to unvaccinated control horses. The hypothesis was that group 2 (no FC2 vaccine strain) would be less well protected than group 3 following experimental infection with a recent FC2 field strain (A/equi-2/Wexford/14) 4.5 months after vaccination. All vaccinated horses had antibody titres to FC1 and FC2. After challenge, serology increased more markedly in group 3 than in group 2. Vaccinated horses had significantly lower total clinical scores and viral shedding. Unexpectedly, viral RNA shedding was significantly lower in group 2 than in group 3. Vaccination induced protective antibody titres to FC1 and FC2 and reduced clinical signs and viral shedding. The two tested vaccines provided equivalent protection against a recent FC2 EIV field strain.


2013 ◽  
Vol 16 (4) ◽  
pp. 663-669
Author(s):  
W. Rozek ◽  
M. Kwasnik ◽  
J.F. Zmudzinski

AbstractChanges in the level of cellular proteins in cells inoculated with equine influenza virus H7N7 and H3N8 were studied with microarray technique. H3N8 induced pro-apoptotic proteins while H7N7 induced both pro- as well as anti-apoptotic factors. The higher level of some cytoskeleton components and proteins involved in the protein quality control was recorded. Relatively high number of proteins involved in the regulation of transcription was down-regulated. The pattern of changes observed for H7N7 and H3N8 may reflect differences in the biological properties of both serotypes.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 784
Author(s):  
Sylvia Reemers ◽  
Sander van Bommel ◽  
Qi Cao ◽  
David Sutton ◽  
Saskia van de Zande

Equine influenza virus (EIV) is a major cause of respiratory disease in horses. Vaccination is an effective tool for infection control. Although various EIV vaccines are widely available, major outbreaks occurred in Europe in 2018 involving a new EIV H3N8 FC1 strain. In France, it was reported that both unvaccinated and vaccinated horses were affected despite >80% vaccination coverage and most horses being vaccinated with a vaccine expressing FC1 antigen. This study assessed whether vaccine type, next to antigenic difference between vaccine and field strain, plays a role. Horses were vaccinated with an ISCOMatrix-adjuvanted, whole inactivated virus vaccine (Equilis Prequenza) and experimentally infected with the new FC1 outbreak strain. Serology (HI), clinical signs, and virus shedding were evaluated in vaccinated compared to unvaccinated horses. Results showed a significant reduction in clinical signs and a lack of virus shedding in vaccinated horses compared to unvaccinated controls. From these results, it can be concluded that Equilis Prequenza provides a high level of protection to challenge with the new FC1 outbreak strain. This suggests that, apart from antigenic differences between vaccine and field strain, other aspects of the vaccine may also play an important role in determining field efficacy.


2014 ◽  
Vol 56 (6) ◽  
pp. 487-492 ◽  
Author(s):  
Lucas Gaíva E Silva ◽  
Alice Mamede Costa Marques Borges ◽  
Eliana Monteforte Cassaro Villalobos ◽  
Maria do Carmo Custodio Souza Hunold Lara ◽  
Elenice Maria Siquetin Cunha ◽  
...  

The prevalence of antibodies against Equine Influenza Virus (EIV) was determined in 529 equines living on ranches in the municipality of Poconé, Pantanal area of Brazil, by means of the hemagglutination inhibition test, using subtype H3N8 as antigen. The distribution and possible association among positive animal and ranches were evaluated by the chi-square test, spatial autoregressive and multiple linear regression models. The prevalence of antibodies against EIV was estimated at 45.2% (95% CI 30.2 - 61.1%) with titers ranging from 20 to 1,280 HAU. Seropositive equines were found on 92.0% of the surveyed ranches. Equine from non-flooded ranches (66.5%) and negativity in equine infectious anemia virus (EIAV) (61.7%) were associated with antibodies against EIV. No spatial correlation was found among the ranches, but the ones located in non-flooded areas were associated with antibodies against EIV. A negative correlation was found between the prevalence of antibodies against EIV and the presence of EIAV positive animals on the ranches. The high prevalence of antibodies against EIV detected in this study suggests that the virus is circulating among the animals, and this statistical analysis indicates that the movement and aggregation of animals are factors associated to the transmission of the virus in the region.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Santosh Dhakal ◽  
Sabra L. Klein

ABSTRACT Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.


2006 ◽  
Vol 5 (3) ◽  
pp. 187-196 ◽  
Author(s):  
Christine Myers ◽  
W. David Wilson

Sign in / Sign up

Export Citation Format

Share Document