scholarly journals PSS3 Bioinformatics Analysis of Potential Targets for Drug Repurposing in Contact Eczema through Microarray Profiles

2020 ◽  
Vol 22 ◽  
pp. S103
Author(s):  
N. Thomas ◽  
G.R. Saraswathy
Author(s):  
Xu Li ◽  
Jinchao Yu ◽  
Zhiming Zhang ◽  
Jing Ren ◽  
Alex E. Peluffo ◽  
...  

The COVID-2019 disease caused by the SARS-CoV-2 virus (aka 2019-nCoV) has raised significant health concerns in China and worldwide. While novel drug discovery and vaccine studies are long, repurposing old drugs against the COVID-2019 epidemic can help identify treatments, with known preclinical, pharmacokinetic, pharmacodynamic, and toxicity profiles, which can rapidly enter Phase 3 or 4 or can be used directly in clinical settings. In this study, we presented a novel network based drug repurposing platform to identify potential drugs for the treatment of COVID-2019. We first analysed the genome sequence of SARS-CoV-2 and identified SARS as the closest disease, based on genome similarity between both causal viruses, followed by MERS and other human coronavirus diseases. Using our AutoSeed pipeline (text mining and database searches), we obtained 34 COVID-2019-related genes. Taking those genes as seeds, we automatically built a molecular network for which our module detection and drug prioritization algorithms identified 24 disease-related human pathways, five modules and finally suggested 78 drugs to repurpose. Following manual filtering based on clinical knowledge, we re-prioritized 30 potential repurposable drugs against COVID-2019 (including pseudoephedrine, andrographolide, chloroquine, abacavir, and thalidomide) . We hope that this data can provide critical insights into SARS-CoV-2 biology and help design rapid clinical trials of treatments against COVID-2019.


2021 ◽  
pp. 100090
Author(s):  
Xu Li ◽  
Jinchao Yu ◽  
Zhiming Zhang ◽  
Jing Ren ◽  
Alex E Peluffo ◽  
...  

2021 ◽  
Author(s):  
Asad Zia ◽  
Sohail Akhtar ◽  
Mubarak Ali Khan

Abstract The SARS-CoV-2 outbreak has challenged the world health community and is still out of control. Since there is no clinical drug available for the corona virus therefore the most important and the fastest way of medicines development is to find potential molecules from the marketed drugs. Herein, bioinformatics analysis on the spike protein (S) of CoV and human angiotensin receptor 2 (ACE-2) with already approved anti-HCV approved drug velpatasvir have been reported. We conducted molecular docking to determine the mode of interaction of velpatasvir and RNA dependent RNA polymerase enzyme as well as inhibition of attachment of S-protein with human host receptor ACE-2. We found that, velpatasvir not only binds tightly with S-protein-ACE2 interface but also with 2019-Cov RdRp, can alter the structure and function of the said proteins and hence will results in the eradication of viral infection. The findings of this study further support the idea of drug repurposing and will help to classify the most successful drugs against COVID-19.


2020 ◽  
Author(s):  
Shruti Koulgi ◽  
Vinod Jani ◽  
Mallikarjunachari Uppuladinne ◽  
Uddhavesh Sonavane ◽  
Asheet Kumar Nath ◽  
...  

<p>The COVID-19 pandemic has been responsible for several deaths worldwide. The causative agent behind this disease is the Severe Acute Respiratory Syndrome – novel Coronavirus 2 (SARS-nCoV2). SARS-nCoV2 belongs to the category of RNA viruses. The main protease, responsible for the cleavage of the viral polyprotein is considered as one of the hot targets for treating COVID-19. Earlier reports suggest the use of HIV anti-viral drugs for targeting the main protease of SARS-CoV, which caused SARS in the year 2002-03. Hence, drug repurposing approach may prove to be useful in targeting the main protease of SARS-nCoV2. The high-resolution crystal structure of 3CL<sup>pro</sup> (main protease) of SARS-nCoV2 (PDB ID: 6LU7) was used as the target. The Food and Drug Administration (FDA) approved and SWEETLEAD database of drug molecules were screened. The apo form of the main protease was simulated for a cumulative of 150 ns and 10 μs open source simulation data was used, to obtain conformations for ensemble docking. The representative structures for docking were selected using RMSD-based clustering and Markov State Modeling analysis. This ensemble docking approach for main protease helped in exploring the conformational variation in the drug binding site of the main protease leading to efficient binding of more relevant drug molecules. The drugs obtained as best hits from the ensemble docking possessed anti-bacterial and anti-viral properties. Small molecules with these properties may prove to be useful to treat symptoms exhibited in COVID-19. This <i>in-silico</i> ensemble docking approach would support identification of potential candidates for repurposing against COVID-19.</p>


2020 ◽  
Author(s):  
Sanaa Bardaweel

Recently, an outbreak of fatal coronavirus, SARS-CoV-2, has emerged from China and is rapidly spreading worldwide. As the coronavirus pandemic rages, drug discovery and development become even more challenging. Drug repurposing of the antimalarial drug chloroquine and its hydroxylated form had demonstrated apparent effectiveness in the treatment of COVID-19 associated pneumonia in clinical trials. SARS-CoV-2 spike protein shares 31.9% sequence identity with the spike protein presents in the Middle East Respiratory Syndrome Corona Virus (MERS-CoV), which infects cells through the interaction of its spike protein with the DPP4 receptor found on macrophages. Sitagliptin, a DPP4 inhibitor, that is known for its antidiabetic, immunoregulatory, anti-inflammatory, and beneficial cardiometabolic effects has been shown to reverse macrophage responses in MERS-CoV infection and reduce CXCL10 chemokine production in AIDS patients. We suggest that Sitagliptin may be beneficial alternative for the treatment of COVID-19 disease especially in diabetic patients and patients with preexisting cardiovascular conditions who are already at higher risk of COVID-19 infection.


Sign in / Sign up

Export Citation Format

Share Document