Innovative on-line near-infrared (NIR) spectroscopy to estimate content of each phase in composite polymer particles prepared by seeded emulsion polymerization

2018 ◽  
Vol 95 ◽  
pp. 23-31 ◽  
Author(s):  
Minhua Yi ◽  
Teng Qiu ◽  
Masayoshi Okubo ◽  
Xiaoyu Li ◽  
Longhai Guo
2009 ◽  
Vol 2009 ◽  
pp. 135-135
Author(s):  
N Prieto ◽  
D W Ross ◽  
E A Navajas ◽  
G Nute ◽  
R I Richardson ◽  
...  

Visible and near infrared reflectance spectroscopy (Vis-NIR) has been widely used by the industry research-base for large-scale meat quality evaluation to predict the chemical composition of meat quickly and accurately. Meat tenderness is measured by means of slow and destructive methods (e.g. Warner-Bratzler shear force). Similarly, sensory analysis, using trained panellists, requires large meat samples and is a complex, expensive and time-consuming technique. Nevertheless, these characteristics are important criteria that affect consumers’ evaluation of beef quality. Vis-NIR technique provides information about the molecular bonds (chemical constituents) and tissue ultra-structure in a scanned sample and thus can indirectly predict physical or sensory parameters of meat samples. Applications of Vis-NIR spectroscopy in an abattoir for prediction of physical and sensory characteristics have been less developed than in other fields. Therefore, the aim of this study was to test the on-line Vis-NIR spectroscopy for the prediction of beef quality characteristics such as colour, instrumental texture, water holding capacity (WHC) and sensory traits, by direct application of a fibre-optic probe to the M. longissimus thoracis with no prior sample treatment.


2019 ◽  
Vol 11 (23) ◽  
pp. 2819 ◽  
Author(s):  
Muhammad Abdul Munnaf ◽  
Said Nawar ◽  
Abdul Mounem Mouazen

Visible and near infrared (vis–NIR) diffuse reflectance spectroscopy has made invaluable contributions to the accurate estimation of soil properties having direct and indirect spectral responses in NIR spectroscopy with measurements made in laboratory, in situ or using on-line (while the sensor is moving) platforms. Measurement accuracies vary with measurement type, for example, accuracy is higher for laboratory than on-line modes. On-line measurement accuracy deteriorates further for secondary (having indirect spectral response) soil properties. Therefore, the aim of this study is to improve on-line measurement accuracy of secondary properties by fusion of laboratory and on-line scanned spectra. Six arable fields were scanned using an on-line sensing platform coupled with a vis–NIR spectrophotometer (CompactSpec by Tec5 Technology for spectroscopy, Germany), with a spectral range of 305–1700 nm. A total of 138 soil samples were collected and used to develop five calibration models: (i) standard, using 100 laboratory scanned samples; (ii) hybrid-1, using 75 laboratory and 25 on-line samples; (iii) hybrid-2, using 50 laboratory and 50 on-line samples; (iv) hybrid-3, using 25 laboratory and 75 on-line samples, and (v) real-time using 100 on-line samples. Partial least squares regression (PLSR) models were developed for soil pH, available potassium (K), magnesium (Mg), calcium (Ca), and sodium (Na) and quality of models were validated using an independent prediction dataset (38 samples). Validation results showed that the standard models with laboratory scanned spectra provided poor to moderate accuracy for on-line prediction, and the hybrid-3 and real-time models provided the best prediction results, although hybrid-2 model with 50% on-line spectra provided equally good results for all properties except for pH and Na. These results suggest that either the real-time model with exclusively on-line spectra or the hybrid model with fusion up to 50% (except for pH and Na) and 75% on-line scanned spectra allows significant improvement of on-line prediction accuracy for secondary soil properties using vis–NIR spectroscopy.


2002 ◽  
Vol 10 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Tsuyoshi Furukawa ◽  
Yasuo Kita ◽  
Shigehiro Sasao ◽  
Kimihiro Matsukawa ◽  
Masahiro Watari ◽  
...  

The melt-extrusion transesterification of ethylene/vinylacetate (EVA) copolymer to ethylene/vinylalcohol (EVAL) copolymers has been monitored by on-line near infrared (NIR) spectroscopy. A total of 60 NIR spectra were measured within 37 minutes after the initial addition of octanol (reagent) and catalyst (sodium methoxide) at the exit of the extruder by use of a fibre-optic probe. The most significant intensity change is observed for a band at 7089 cm−1 due to the first overtone of an OH stretching mode of the EVAL copolymers. We can monitor the progress of the reaction by plotting the peak intensity at 7089 cm−1 only. A principal component analysis (PCA) was carried out for the series of NIR spectra in the 7300–6900 cm−1 region. A score plot of PCA factor 1 is almost identical with the plot of the peak intensity at 7089 cm−1. Calibration models for predicting the vinyl acetate content in EVA copolymers have been developed by use of partial least squares (PLS) regression. The correlation coefficient and standard error of prediction are 0.96 and 0.85%, respectively, indicating that the described technique can be used to monitor the transesterification reaction.


2017 ◽  
Vol 56 (27) ◽  
pp. 7747-7756 ◽  
Author(s):  
Rukhsana Shabnam ◽  
Muhammad A. Rahman ◽  
Muhammad A. J. Miah ◽  
Mostafa K. Sharafat ◽  
Hasan M. T. Islam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document