Targeting conserved co-opted host factors to block virus replication: Using allosteric inhibitors of the cytosolic Hsp70s to interfere with tomato bushy stunt virus replication

Virology ◽  
2021 ◽  
Author(s):  
Melissa Molho ◽  
K. Reddisiva Prasanth ◽  
Judit Pogany ◽  
Peter D. Nagy
2021 ◽  
Author(s):  
Yann Breton ◽  
Corinne Barat ◽  
Michel J. Tremblay

Several host factors influence HIV-1 infection and replication. The p53-mediated antiviral role in monocytes-derived macrophages (MDMs) was previously highlighted. Indeed, an increase in p53 level results in a stronger restriction against HIV-1 early replication steps through SAMHD1 activity. In this study, we investigated the potential role of some p53 isoforms in HIV-1 infection. Transfection of isoform-specific siRNA induces distinctive effects on the virus life cycle. For example, in contrast to a siRNA targeting all isoforms, a knockdown of Δ133p53 transcripts reduces virus replication in MDMs that is correlated with a decrease in phosphorylated inactive SAMHD1. Combination of Δ133p53 knockdown and Nutlin-3, a pharmacological inhibitor of MDM2 that stabilizes p53, further reduces susceptibility of MDMs to HIV-1 infection, thus suggesting an inhibitory role of Δ133p53 towards p53 antiviral activity. In contrast, p53β knockdown in MDMs increases the viral production independently of SAMHD1. Moreover, experiments with a Nef-deficient virus show that this viral protein plays a protective role against the antiviral environment mediated by p53. Finally, HIV-1 infection affects the expression pattern of p53 isoforms by increasing p53β and p53γ mRNA levels while stabilizing the protein level of p53α and some isoforms from the p53β subclass. The balance between the various p53 isoforms is therefore an important factor in the overall susceptibility of macrophages to HIV-1 infection, fine-tuning the p53 response against HIV-1. This study brings a new understanding of the complex role of p53 in virus replication processes in myeloid cells. Importance As of today, HIV-1 is still considered as a global pandemic without a functional cure, partly because of the presence of stable viral reservoirs. Macrophages constitute one of these cell reservoirs, contributing to the viral persistence. Studies investigating the host factors involved in cell susceptibility to HIV-1 infection might lead to a better understanding of the reservoir formation and will eventually allow the development of an efficient cure. Our team previously showed the antiviral role of p53 in macrophages, which acts by compromising the early steps of HIV-1 replication. In this study, we demonstrate the involvement of p53 isoforms, which regulates p53 activity and define the cellular environment influencing viral replication. In addition, the results concerning the potential role of p53 in antiviral innate immunity could be transposed to other fields of virology and suggest that knowledge in oncology can be applied to HIV-1 research.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Emily E. Ackerman ◽  
Eiryo Kawakami ◽  
Manami Katoh ◽  
Tokiko Watanabe ◽  
Shinji Watanabe ◽  
...  

ABSTRACTThe positions of host factors required for viral replication within a human protein-protein interaction (PPI) network can be exploited to identify drug targets that are robust to drug-mediated selective pressure. Host factors can physically interact with viral proteins, be a component of virus-regulated pathways (where proteins do not interact with viral proteins), or be required for viral replication but unregulated by viruses. Here, we demonstrate a method of combining human PPI networks with virus-host PPI data to improve antiviral drug discovery for influenza viruses by identifying target host proteins. Analysis shows that influenza virus proteins physically interact with host proteins in network positions significant for information flow, even after the removal of known abundance-degree bias within PPI data. We have isolated a subnetwork of the human PPI network that connects virus-interacting host proteins to host factors that are important for influenza virus replication without physically interacting with viral proteins. The subnetwork is enriched for signaling and immune processes distinct from those associated with virus-interacting proteins. Selecting proteins based on subnetwork topology, we performed an siRNA screen to determine whether the subnetwork was enriched for virus replication host factors and whether network position within the subnetwork offers an advantage in prioritization of drug targets to control influenza virus replication. We found that the subnetwork is highly enriched for target host proteins—more so than the set of host factors that physically interact with viral proteins. Our findings demonstrate that network positions are a powerful predictor to guide antiviral drug candidate prioritization.IMPORTANCEIntegrating virus-host interactions with host protein-protein interactions, we have created a method using these established network practices to identify host factors (i.e., proteins) that are likely candidates for antiviral drug targeting. We demonstrate that interaction cascades between host proteins that directly interact with viral proteins and host factors that are important to influenza virus replication are enriched for signaling and immune processes. Additionally, we show that host proteins that interact with viral proteins are in network locations of power. Finally, we demonstrate a new network methodology to predict novel host factors and validate predictions with an siRNA screen. Our results show that integrating virus-host proteins interactions is useful in the identification of antiviral drug target candidates.


2013 ◽  
Vol 9 (7) ◽  
pp. e1003440 ◽  
Author(s):  
Benoît de Chassey ◽  
Anne Aublin-Gex ◽  
Alessia Ruggieri ◽  
Laurène Meyniel-Schicklin ◽  
Fabrine Pradezynski ◽  
...  

Viruses ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 484 ◽  
Author(s):  
Hernan Garcia-Ruiz

Plant viruses use cellular factors and resources to replicate and move. Plants respond to viral infection by several mechanisms, including innate immunity, autophagy, and gene silencing, that viruses must evade or suppress. Thus, the establishment of infection is genetically determined by the availability of host factors necessary for virus replication and movement and by the balance between plant defense and viral suppression of defense responses. Host factors may have antiviral or proviral activities. Proviral factors condition susceptibility to viruses by participating in processes essential to the virus. Here, we review current advances in the identification and characterization of host factors that condition susceptibility to plant viruses. Host factors with proviral activity have been identified for all parts of the virus infection cycle: viral RNA translation, viral replication complex formation, accumulation or activity of virus replication proteins, virus movement, and virion assembly. These factors could be targets of gene editing to engineer resistance to plant viruses.


RNA ◽  
2009 ◽  
Vol 15 (11) ◽  
pp. 1971-1979 ◽  
Author(s):  
D. Cao ◽  
D. Haussecker ◽  
Y. Huang ◽  
M. A. Kay

Viruses ◽  
2013 ◽  
Vol 5 (6) ◽  
pp. 1431-1446 ◽  
Author(s):  
Hong Zhang ◽  
Benjamin Hale ◽  
Ke Xu ◽  
Bing Sun

PROTEOMICS ◽  
2015 ◽  
Vol 15 (13) ◽  
pp. 2267-2280 ◽  
Author(s):  
Emmely E. Treffers ◽  
Ali Tas ◽  
Florine E.M. Scholte ◽  
Myrthe N. Van ◽  
Matthias T. Heemskerk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document