p53 isoforms
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 23)

H-INDEX

23
(FIVE YEARS 5)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Ananya Chakravarti ◽  
Heshani N Thirimanne ◽  
Savanna Brown ◽  
Brian R Calvi

p53 gene family members in humans and other organisms encode a large number of protein isoforms whose functions are largely undefined. Using Drosophila as a model, we find that a p53B isoform is expressed predominantly in the germline where it colocalizes with p53A into subnuclear bodies. It is only p53A, however, that mediates the apoptotic response to ionizing radiation in the germline and soma. In contrast, p53A and p53B are both required for the normal repair of meiotic DNA breaks, an activity that is more crucial when meiotic recombination is defective. We find that in oocytes with persistent DNA breaks p53A is also required to activate a meiotic pachytene checkpoint. Our findings indicate that Drosophila p53 isoforms have DNA lesion and cell type-specific functions, with parallels to the functions of mammalian p53 family members in the genotoxic stress response and oocyte quality control.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5231
Author(s):  
Ana Tadijan ◽  
Francesca Precazzini ◽  
Nikolina Hanžić ◽  
Martina Radić ◽  
Nicolò Gavioli ◽  
...  

Cutaneous melanoma is the most aggressive form of skin cancer. Despite the significant advances in the management of melanoma in recent decades, it still represents a challenge for clinicians. The TP53 gene, the guardian of the genome, which is altered in more than 50% of human cancers, is rarely mutated in melanoma. More recently, researchers started to appreciate the importance of shorter p53 isoforms as potential modifiers of the p53-dependent responses. We analyzed the expression of p53 and p73 isoforms both at the RNA and protein level in a panel of melanoma-derived cell lines with different TP53 and BRAF status, in normal conditions or upon treatment with common anti-cancer DNA damaging agents or targeted therapy. Using lentiviral vectors, we also generated stable clones of H1299 p53 null cells over-expressing the less characterized isoforms Δ160p53α, Δ160p53β, and Δ160p53γ. Further, we obtained two melanoma-derived cell lines resistant to BRAF inhibitor vemurafenib. We observed that melanoma cell lines expressed a wide array of p53 and p73 isoforms, with Δ160p53α as the most variable one. We demonstrated for the first time that Δ160p53α, and to a lesser extent Δ160p53β, can be recruited on chromatin, and that Δ160p53γ can localize in perinuclear foci; moreover, all Δ160p53 isoforms can stimulate proliferation and in vitro migration. Lastly, vemurafenib-resistant melanoma cells showed an altered expression of p53 and p73 isoforms, namely an increased expression of potentially pro-oncogenic Δ40p53β and a decrease in tumor-suppressive TAp73β. We therefore propose that p53 family isoforms can play a role in melanoma cells’ aggressiveness.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Yitian Guo ◽  
Melanie Rall-Scharpf ◽  
Jean-Christophe Bourdon ◽  
Lisa Wiesmüller ◽  
Stephanie Biber

AbstractThe recently discovered p53-dependent DNA damage tolerance (DDT) pathway relies on its biochemical activities in DNA-binding, oligomerization, as well as complex formation with the translesion synthesis (TLS) polymerase iota (POLι). These p53-POLι complexes slow down nascent DNA synthesis for safe, homology-directed bypass of DNA replication barriers. In this study, we demonstrate that the alternative p53-isoforms p53β, p53γ, Δ40p53α, Δ133p53α, and Δ160p53α differentially affect this p53-POLι-dependent DDT pathway originally described for canonical p53α. We show that the C-terminal isoforms p53β and p53γ, comprising a truncated oligomerization domain (OD), bind PCNA. Conversely, N-terminally truncated isoforms have a reduced capacity to engage in this interaction. Regardless of the specific loss of biochemical activities required for this DDT pathway, all alternative isoforms were impaired in promoting POLι recruitment to PCNA in the chromatin and in decelerating DNA replication under conditions of enforced replication stress after Mitomycin C (MMC) treatment. Consistent with this, all alternative p53-isoforms no longer stimulated recombination, i.e., bypass of endogenous replication barriers. Different from the other isoforms, Δ133p53α and Δ160p53α caused a severe DNA replication problem, namely fork stalling even in untreated cells. Co-expression of each alternative p53-isoform together with p53α exacerbated the DDT pathway defects, unveiling impaired POLι recruitment and replication deceleration already under unperturbed conditions. Such an inhibitory effect on p53α was particularly pronounced in cells co-expressing Δ133p53α or Δ160p53α. Notably, this effect became evident after the expression of the isoforms in tumor cells, as well as after the knockdown of endogenous isoforms in human hematopoietic stem and progenitor cells. In summary, mimicking the situation found to be associated with many cancer types and stem cells, i.e., co-expression of alternative p53-isoforms with p53α, carved out interference with p53α functions in the p53-POLι-dependent DDT pathway.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nikola Arsic ◽  
Tania Slatter ◽  
Gilles Gadea ◽  
Etienne Villain ◽  
Aurelie Fournet ◽  
...  

AbstractThe p53 isoform, Δ133p53β, is critical in promoting cancer. Here we report that Δ133p53β activity is regulated through an aggregation-dependent mechanism. Δ133p53β aggregates were observed in cancer cells and tumour biopsies. The Δ133p53β aggregation depends on association with interacting partners including p63 family members or the CCT chaperone complex. Depletion of the CCT complex promotes accumulation of Δ133p53β aggregates and loss of Δ133p53β dependent cancer cell invasion. In contrast, association with p63 family members recruits Δ133p53β from aggregates increasing its intracellular mobility. Our study reveals novel mechanisms of cancer progression for p53 isoforms which are regulated through sequestration in aggregates and recruitment upon association with specific partners like p63 isoforms or CCT chaperone complex, that critically influence cancer cell features like EMT, migration and invasion.


Author(s):  
Karoline Diesing ◽  
Silvia Ribback ◽  
Stefan Winter ◽  
Manuela Gellert ◽  
Antonia M. Oster ◽  
...  

Abstract Purpose Although p53 is rarely mutated in ccRCC, its overexpression has been linked to poor prognosis. The current study sought to elucidate the unique role of p53 in ccRCC with genomic, proteomic, and functional analyses. Materials and methods Data from the Cancer Genome Atlas (TCGA) were evaluated for genomic and proteomic characteristics of p53; a tissue micro array (TMA) study was carried out to evaluate the association of p53 and phosphorylated p53 (pp53) with clinical outcome. Mechanistic in vitro experiments were performed to confirm a pro-apoptotic loss of p53 in ccRCC and p53 isoforms as well as posttranslational modifications of p53 where assessed to provide possible reasons for a functional inhibition of p53 in ccRCC. Results A low somatic mutation rate of p53 could be confirmed. Although mRNA levels were correlated with poor prognosis and clinicopathological features, there was no monotonous association of mRNA levels with survival outcome. Higher p53 protein levels could be confirmed as poor prognostic features. In vitro, irradiation of ccRCC cell lines markedly induced levels of p53 and of activated (phosphorylated) p53. However, irradiated ccRCC cells demonstrated similar proliferation, migration, and p53 transcriptional activity like non-irradiated controls indicating a functional inhibition of p53. p53 isoforms and could not be correlated with clinical outcome of ccRCC patients. Conclusions p53 is rarely mutated but the wildtype p53 is functionally inhibited in ccRCC. To investigate mechanisms that underlie functional inhibition of p53 may provide attractive therapeutic targets in ccRCC.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256938
Author(s):  
Paulina Żydowicz-Machtel ◽  
Mariola Dutkiewicz ◽  
Agata Swiatkowska ◽  
Dorota Gurda-Woźna ◽  
Jerzy Ciesiołka

The p53 protein is expressed as at least twelve protein isoforms. Within intron 4 of the human TP53 gene, a P2 transcription initiation site is located and this transcript encodes two p53 isoforms: Δ133p53 and Δ160p53. Here, the secondary structure of the 5′-terminal region of P2-initiated mRNA was characterized by means of the SHAPE and Pb2+-induced cleavage methods and for the first time, a secondary structure model of this region was proposed. Surprisingly, only Δ133p53 isoform was synthetized in vitro from the P2-initiated p53 mRNA while translation from both initiation codons occurred after the transfection of vector-encoded model mRNA to HCT116 cells. Interestingly, translation performed in the presence of the cap analogue suggested that the cap-independent process contributes to the translation of P2-initiated p53 mRNA. Subsequently, several antisense oligonucleotides targeting the 5′-terminal region of P2-initiated p53 mRNA were designed. The selected oligomers were applied in in vitro translation assays as well as in cell lines and their impact on the Δ133p53 synthesis and on cell viability was investigated. The results show that these oligomers are attractive tools in the modulation of the translation of P2-initiated p53 mRNA through attacking the 5′ terminus of the transcript. Since cell proliferation is also reduced by antisense oligomers that lower the level of Δ133p53, this demonstrates an involvement of this isoform in tumorigenesis.


2021 ◽  
Author(s):  
Yann Breton ◽  
Corinne Barat ◽  
Michel J. Tremblay

Several host factors influence HIV-1 infection and replication. The p53-mediated antiviral role in monocytes-derived macrophages (MDMs) was previously highlighted. Indeed, an increase in p53 level results in a stronger restriction against HIV-1 early replication steps through SAMHD1 activity. In this study, we investigated the potential role of some p53 isoforms in HIV-1 infection. Transfection of isoform-specific siRNA induces distinctive effects on the virus life cycle. For example, in contrast to a siRNA targeting all isoforms, a knockdown of Δ133p53 transcripts reduces virus replication in MDMs that is correlated with a decrease in phosphorylated inactive SAMHD1. Combination of Δ133p53 knockdown and Nutlin-3, a pharmacological inhibitor of MDM2 that stabilizes p53, further reduces susceptibility of MDMs to HIV-1 infection, thus suggesting an inhibitory role of Δ133p53 towards p53 antiviral activity. In contrast, p53β knockdown in MDMs increases the viral production independently of SAMHD1. Moreover, experiments with a Nef-deficient virus show that this viral protein plays a protective role against the antiviral environment mediated by p53. Finally, HIV-1 infection affects the expression pattern of p53 isoforms by increasing p53β and p53γ mRNA levels while stabilizing the protein level of p53α and some isoforms from the p53β subclass. The balance between the various p53 isoforms is therefore an important factor in the overall susceptibility of macrophages to HIV-1 infection, fine-tuning the p53 response against HIV-1. This study brings a new understanding of the complex role of p53 in virus replication processes in myeloid cells. Importance As of today, HIV-1 is still considered as a global pandemic without a functional cure, partly because of the presence of stable viral reservoirs. Macrophages constitute one of these cell reservoirs, contributing to the viral persistence. Studies investigating the host factors involved in cell susceptibility to HIV-1 infection might lead to a better understanding of the reservoir formation and will eventually allow the development of an efficient cure. Our team previously showed the antiviral role of p53 in macrophages, which acts by compromising the early steps of HIV-1 replication. In this study, we demonstrate the involvement of p53 isoforms, which regulates p53 activity and define the cellular environment influencing viral replication. In addition, the results concerning the potential role of p53 in antiviral innate immunity could be transposed to other fields of virology and suggest that knowledge in oncology can be applied to HIV-1 research.


2021 ◽  
Vol 9 (6) ◽  
pp. e001846
Author(s):  
Kevin Jan Legscha ◽  
Edite Antunes Ferreira ◽  
Antonios Chamoun ◽  
Alexander Lang ◽  
Mohamed Hemaid Sayed Awwad ◽  
...  

BackgroundTumor microenvironment-associated T cell senescence is a key limiting factor for durable effective cancer immunotherapy. A few studies have demonstrated the critical role of the tumor suppressor TP53-derived p53 isoforms in cellular senescence process of non-immune cells. However, their role in lymphocytes, in particular tumor-antigen (TA) specific T cells remain largely unexplored.MethodsHuman T cells from peripheral blood were retrovirally engineered to coexpress a TA-specific T cell receptor and the Δ133p53α-isoform, and characterized for their cellular phenotype, metabolic profile and effector functions.ResultsPhenotypic analysis of Δ133p53α-modified T cells revealed a marked reduction of the T-cell inhibitory molecules (ie, CD160 and TIGIT), a lower frequency of senescent-like CD57+ and CD160+ CD8+ T cell populations, and an increased number of less differentiated CD28+ T cells. Consistently, we demonstrated changes in the cellular metabolic program toward a quiescent T cell state. On a functional level, Δ133p53α-expressing T cells acquired a long-term proliferative capacity, showed superior cytokine secretion and enhanced tumor-specific killing in vitro and in mouse tumor model. Finally, we demonstrated the capacity of Δ133p53α to restore the antitumor response of senescent T cells isolated from multiple myeloma patients.ConclusionThis study uncovered a broad effect of Δ133p53α isoform in regulating T lymphocyte function. Enhancing fitness and effector functions of senescent T cells by modulation of p53 isoforms could be exploited for future translational research to improve cancer immunotherapy and immunosenescence-related diseases.


2021 ◽  
Author(s):  
Karoline Diesing ◽  
Silvia Ribback ◽  
Stefan Winter ◽  
Manuela Gellert ◽  
Antonia M. Oster ◽  
...  

Abstract Purpose Although p53 is rarely mutated in ccRCC, its overexpression has been linked to poor prognosis. The current study sought to elucidate the unique role of p53 in ccRCC with genomic, proteomic, and functional analyses. Materials and Methods Data from the Cancer Genome Atlas (TCGA) were evaluated for genomic and proteomic characteristics of p53; a tissue micro array (TMA) study was carried out to evaluate the association of p53 and phosphorylated p53 (pp53) with clinical outcome. Mechanistic in vitro experiments were performed to confirm a pro-apoptotic loss of p53 in ccRCC and p53 isoforms as well as posttranslational modifications of p53 where assessed to provide possible reasons for a functional inhibition of p53 in ccRCC. Results A low somatic mutation rate of p53 could be confirmed. Although mRNA levels were correlated with poor prognosis and clinicopathological features, there was no monotonous association of mRNA levels with survival outcome. Higher p53 protein levels could be confirmed as poor prognostic features. In vitro, irradiation of ccRCC cell lines markedly induced levels of p53 and of activated (phosphorylated) p53. However, irradiated ccRCC cells demonstrated similar proliferation, migration, and p53 transcriptional activity like non-irradiated controls indicating a functional inhibition of p53. p53 isoforms and could not be correlated with clinical outcome of ccRCC patients. Conclusions p53 is rarely mutated but the wildtype p53 is functionally inhibited in ccRCC. To investigate mechanisms that underly functional inhibition of p53 may provide attractive therapeutic targets in ccRCC.


2021 ◽  
Author(s):  
Dahlia Nuñez‐Hernandez ◽  
Laura Camacho‐Jiménez ◽  
Lilia Leyva‐Carrillo ◽  
Alma B. Peregrino‐Uriarte ◽  
Elisa M. Valenzuela‐Soto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document