Identification of the tail assembly chaperone genes of T4-Like phages suggests a mechanism other than translational frameshifting for biogenesis of their encoded proteins

Virology ◽  
2021 ◽  
Author(s):  
Maria Vladimirov ◽  
Vasu Gautam ◽  
Alan R. Davidson
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fan Liu ◽  
Hua Li ◽  
Junwei Wu ◽  
Bin Wang ◽  
Na Tian ◽  
...  

AbstractThe LOX genes have been identified and characterized in many plant species, but studies on the banana LOX genes are very limited. In this study, we respectively identified 18 MaLOX, 11 MbLOX, and 12 MiLOX genes from the Musa acuminata, M. balbisiana and M. itinerans genome data, investigated their gene structures and characterized the physicochemical properties of their encoded proteins. Banana LOXs showed a preference for using and ending with G/C and their encoded proteins can be classified into 9-LOX, Type I 13-LOX and Type II 13-LOX subfamilies. The expansion of the MaLOXs might result from the combined actions of genome-wide, tandem, and segmental duplications. However, tandem and segmental duplications contribute to the expansion of MbLOXs. Transcriptome data based gene expression analysis showed that MaLOX1, 4, and 7 were highly expressed in fruit and their expression levels were significantly regulated by ethylene. And 11, 12 and 7 MaLOXs were found to be low temperature-, high temperature-, and Fusarium oxysporum f. sp. Cubense tropical race 4 (FocTR4)-responsive, respectively. MaLOX8, 9 and 13 are responsive to all the three stresses, MaLOX4 and MaLOX12 are high temperature- and FocTR4-responsive; MaLOX6 and MaLOX17 are significantly induced by low temperature and FocTR4; and the expression of MaLOX7 and MaLOX16 are only affected by high temperature. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression levels of several MaLOXs are regulated by MeJA and FocTR4, indicating that they can increase the resistance of banana by regulating the JA pathway. Additionally, the weighted gene co-expression network analysis (WGCNA) of MaLOXs revealed 3 models respectively for 5 (MaLOX7-11), 3 (MaLOX6, 13, and 17), and 1 (MaLOX12) MaLOX genes. Our findings can provide valuable information for the characterization, evolution, diversity and functionality of MaLOX, MbLOX and MiLOX genes and are helpful for understanding the roles of LOXs in banana growth and development and adaptations to different stresses.


2019 ◽  
Vol 47 (5) ◽  
pp. 1429-1436 ◽  
Author(s):  
Rawaa A. Z. Al-Faresi ◽  
Robert. N. Lightowlers ◽  
Zofia M. A. Chrzanowska-Lightowlers

Abstract Mitochondria are ubiquitous organelles present in the cytoplasm of all nucleated eukaryotic cells. These organelles are described as arising from a common ancestor but a comparison of numerous aspects of mitochondria between different organisms provides remarkable examples of divergent evolution. In humans, these organelles are of dual genetic origin, comprising ∼1500 nuclear-encoded proteins and thirteen that are encoded by the mitochondrial genome. Of the various functions that these organelles perform, it is only oxidative phosphorylation, which provides ATP as a source of chemical energy, that is dependent on synthesis of these thirteen mitochondrially encoded proteins. A prerequisite for this process of translation are the mitoribosomes. The recent revolution in cryo-electron microscopy has generated high-resolution mitoribosome structures and has undoubtedly revealed some of the most distinctive molecular aspects of the mitoribosomes from different organisms. However, we still lack a complete understanding of the mechanistic aspects of this process and many of the factors involved in post-transcriptional gene expression in mitochondria. This review reflects on the current knowledge and illustrates some of the striking differences that have been identified between mitochondria from a range of organisms.


1985 ◽  
Vol 201 (2) ◽  
pp. 258-264 ◽  
Author(s):  
Jean Brevet ◽  
Florence Faure ◽  
Denise Borowski
Keyword(s):  

2013 ◽  
Vol 103 (9) ◽  
pp. 941-948 ◽  
Author(s):  
Sushma Jossey ◽  
Houston A. Hobbs ◽  
Leslie L. Domier

Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean (Glycine max). The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing mutants in and chimeric recombinants between SMV 413 (efficiently aphid and seed transmitted) and an isolate of SMV G2 (not aphid or seed transmitted). As previously reported, the DAG amino acid sequence motif near the amino terminus of the coat protein (CP) was the major determinant in differences in aphid transmissibility of the two SMV isolates, and helper component proteinase (HC-Pro) played a secondary role. Seed transmission of SMV was influenced by P1, HC-Pro, and CP. Replacement of the P1 coding region of SMV 413 with that of SMV G2 significantly enhanced seed transmissibility of SMV 413. Substitution in SMV 413 of the two amino acids that varied in the CPs of the two isolates with those from SMV G2, G to D in the DAG motif and Q to P near the carboxyl terminus, significantly reduced seed transmission. The Q-to-P substitution in SMV 413 also abolished virus-induced seed-coat mottling in plant introduction 68671. This is the first report associating P1, CP, and the DAG motif with seed transmission of a potyvirus and suggests that HC-Pro interactions with CP are important for multiple functions in the virus infection cycle.


2018 ◽  
Vol 6 (7) ◽  
Author(s):  
Tetsuya Yoshida ◽  
Yugo Kitazawa ◽  
Yutaro Neriya ◽  
Naoi Hosoe ◽  
Yuji Fujimoto ◽  
...  

ABSTRACT The complete genome sequence of the first Japanese isolate of hibiscus latent Singapore virus (HLSV-J) was determined. The genomes of HLSV-J and a reported isolate from Singapore had only 86.7% nucleotide identity, while the encoded proteins shared amino acid identities of more than 95%.


Digestion ◽  
1993 ◽  
Vol 54 (1) ◽  
pp. 9-14
Author(s):  
Nicola Napoli ◽  
Giorgio Fiore ◽  
Giacomo Fera ◽  
Angela Modugno ◽  
Gianluigi Giannelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document