The basic reproduction number of vector-borne plant virus epidemics

2017 ◽  
Vol 241 ◽  
pp. 196-202 ◽  
Author(s):  
Frank Van den Bosch ◽  
Michael J. Jeger
Epidemics ◽  
2009 ◽  
Vol 1 (3) ◽  
pp. 153-161 ◽  
Author(s):  
N.A. Hartemink ◽  
B.V. Purse ◽  
R. Meiswinkel ◽  
H.E. Brown ◽  
A. de Koeijer ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Stanislas Ouaro ◽  
Ali Traoré

We study a vector-borne disease with age of vaccination. A nonlinear incidence rate including mass action and saturating incidence as special cases is considered. The global dynamics of the equilibria are investigated and we show that if the basic reproduction number is less than 1, then the disease-free equilibrium is globally asymptotically stable; that is, the disease dies out, while if the basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable, which means that the disease persists in the population. Using the basic reproduction number, we derive a vaccination coverage rate that is required for disease control and elimination.


2017 ◽  
Author(s):  
Yu-Han Kao ◽  
Marisa C. Eisenberg

AbstractBackgroundMathematical modeling has an extensive history in vector-borne disease epidemiology, and is increasingly used for prediction, intervention design, and understanding mechanisms. Many of these studies rely on parameter estimation to link models and data, and to tailor predictions and counterfactuals to specific settings. However, few studies have formally evaluated whether vector-borne disease models can properly estimate the parameters of interest given the constraints of a particular dataset.Methodology/Principle FindingsIdentifiability methods allow us to examine whether model parameters can be estimated uniquely—a lack of consideration of such issues can result in misleading or incorrect parameter estimates and model predictions. Here, we evaluate both structural (theoretical) and practical identifiability of a commonly used compartmental model of mosquitoborne disease, using 2010 dengue epidemic in Taiwan as a case study. We show that while the model is structurally identifiable, it is practically unidentifiable under a range of human and mosquito time series measurement scenarios. In particular, the transmission parameters form a practically identifiable combination and thus cannot be estimated separately, which can lead to incorrect predictions of the effects of interventions. However, in spite of unidentifiability of the individual parameters, the basic reproduction number was successfully estimated across the unidentifiable parameter ranges. These identifiability issues can be resolved by directly measuring several additional human and mosquito life-cycle parameters both experimentally and in the field.ConclusionsWhile we only consider the simplest case for the model, without explicit environmental drivers, we show that a commonly used model of vector-borne disease is unidentifiable from human and mosquito incidence data, making it difficult or impossible to estimate parameters or assess intervention strategies. This work illustrates the importance of examining identifiability when linking models with data to make predictions, and particularly highlights the importance of combining experimental, field, and case data if we are to successfully estimate epidemiological and ecological parameters using models.Author SummaryMathematical models have seen increasing use in understanding transmission processes, developing interventions, and predicting disease incidence and prevalence. Vector-borne diseases in particular present both a challenge and an opportunity for modeling, due to the complex interactions between host and vector species. A key step in many of these studies is connecting transmission models with data to infer parameters and make useful predictions, which requires careful consideration of identifiability and uncertainty of the model parameters. Whether due to intrinsic limitations of the model structure, or practical limitations of the data collected, is common that many different parameter values may yield the same or very similar fits to the data, making it impossible to successfully estimate the parameters. This issue of parameter unidentifiability can have broad implications for our ability to draw conclusions from mechanistic models—in some cases making it difficult or impossible to generate specific predictions, forecasts, or parameter estimates from a given model and data. Here, we evaluate these questions for a commonly-used model of vectorborne disease, examining how parameter uncertainty and unidentifiability can affect intervention predictions, estimation of the basic reproduction number, and other public health conclusions drawn from the model.


Author(s):  
Necibe Tuncer ◽  
Sunil Giri

In this paper we the study of dynamics of time since infection structured vector born model with the direct transmission. We use standard incidence term to model the new infections. We analyze the corresponding system of partial di erential equation and obtain an explicit formula for the basic reproduction number R0. The diseases-free equilibrium is locally and globally asymptotically stable whenever the basic reproduction number is less than one, R0 < 1. Endemic equilibrium exists and is locally asymptotically stable when R0 > 1. The disease will persist at the endemic equilibrium whenever the basic reproduction number is greater than one.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Marcos Amaku ◽  
Marcelo Nascimento Burattini ◽  
Francisco Antonio Bezerra Coutinho ◽  
Luis Fernandez Lopez ◽  
Eduardo Massad

To determine the maximum equilibrium prevalence of mosquito-borne microparasitic infections, this paper proposes a general model for vector-borne infections which is flexible enough to comprise the dynamics of a great number of the known diseases transmitted by arthropods. From equilibrium analysis, we determined the number of infected vectors as an explicit function of the model’s parameters and the prevalence of infection in the hosts. From the analysis, it is also possible to derive the basic reproduction number and the equilibrium force of infection as a function of those parameters and variables. From the force of infection, we were able to conclude that, depending on the disease’s structure and the model’s parameters, there is a maximum value of equilibrium prevalence for each of the mosquito-borne microparasitic infections. The analysis is exemplified by the cases of malaria and dengue fever. With the values of the parameters chosen to illustrate those calculations, the maximum equilibrium prevalence found was 31% and 0.02% for malaria and dengue, respectively. The equilibrium analysis demonstrated that there is a maximum prevalence for the mosquito-borne microparasitic infections.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 86-100
Author(s):  
Nita H. Shah ◽  
Ankush H. Suthar ◽  
Ekta N. Jayswal ◽  
Ankit Sikarwar

In this article, a time-dependent susceptible-infected-recovered (SIR) model is constructed to investigate the transmission rate of COVID-19 in various regions of India. The model included the fundamental parameters on which the transmission rate of the infection is dependent, like the population density, contact rate, recovery rate, and intensity of the infection in the respective region. Looking at the great diversity in different geographic locations in India, we determined to calculate the basic reproduction number for all Indian districts based on the COVID-19 data till 7 July 2020. By preparing district-wise spatial distribution maps with the help of ArcGIS 10.2, the model was employed to show the effect of complete lockdown on the transmission rate of the COVID-19 infection in Indian districts. Moreover, with the model's transformation to the fractional ordered dynamical system, we found that the nature of the proposed SIR model is different for the different order of the systems. The sensitivity analysis of the basic reproduction number is done graphically which forecasts the change in the transmission rate of COVID-19 infection with change in different parameters. In the numerical simulation section, oscillations and variations in the model compartments are shown for two different situations, with and without lockdown.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dipo Aldila ◽  
Brenda M. Samiadji ◽  
Gracia M. Simorangkir ◽  
Sarbaz H. A. Khosnaw ◽  
Muhammad Shahzad

Abstract Objective Several essential factors have played a crucial role in the spreading mechanism of COVID-19 (Coronavirus disease 2019) in the human population. These factors include undetected cases, asymptomatic cases, and several non-pharmaceutical interventions. Because of the rapid spread of COVID-19 worldwide, understanding the significance of these factors is crucial in determining whether COVID-19 will be eradicated or persist in the population. Hence, in this study, we establish a new mathematical model to predict the spread of COVID-19 considering mentioned factors. Results Infection detection and vaccination have the potential to eradicate COVID-19 from Jakarta. From the sensitivity analysis, we find that rapid testing is crucial in reducing the basic reproduction number when COVID-19 is endemic in the population rather than contact trace. Furthermore, our results indicate that a vaccination strategy has the potential to relax social distancing rules, while maintaining the basic reproduction number at the minimum possible, and also eradicate COVID-19 from the population with a higher vaccination rate. In conclusion, our model proposed a mathematical model that can be used by Jakarta’s government to relax social distancing policy by relying on future COVID-19 vaccine potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Abdul Kuddus ◽  
M. Mohiuddin ◽  
Azizur Rahman

AbstractAlthough the availability of the measles vaccine, it is still epidemic in many countries globally, including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}<1)$$ ( i . e . R 0 < 1 ) . This paper investigates a modified (SVEIR) measles compartmental model with double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical analysis of the resulting system and find that the model contains two equilibrium points: a disease-free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction number is less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{ R}}_{0}<1)$$ ( i . e . R 0 < 1 ) , and if greater than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}>1)$$ ( i . e . R 0 > 1 ) epidemic occurs. While using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the former condition on $${\mathrm{R}}_{0}$$ R 0 . The partial rank correlation coefficients (PRCCs), a global sensitivity analysis method is used to compute $${\mathrm{R}}_{0}$$ R 0 and measles prevalence $$\left({\mathrm{I}}^{*}\right)$$ I ∗ with respect to the estimated and fitted model parameters. We found that the transmission rate $$(\upbeta )$$ ( β ) had the most significant influence on measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. These findings show that how progression rate, transmission rate and double dose vaccination rate affect the dynamics of measles prevalence. The information that we generate from this study may help government and public health professionals in making strategies to deal with the omissions of a measles outbreak and thus control and prevent an epidemic in Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document