Continuous-feed carbonation of waste incinerator bottom ash in a rotating drum reactor

2019 ◽  
Vol 99 ◽  
pp. 135-145
Author(s):  
Felix Brück ◽  
Kristian Ufer ◽  
Tim Mansfeldt ◽  
Harald Weigand
2021 ◽  
Vol 125 ◽  
pp. 40-48
Author(s):  
Kevin Schnabel ◽  
Felix Brück ◽  
Tim Mansfeldt ◽  
Harald Weigand

2018 ◽  
Vol 6 (4) ◽  
pp. 5259-5268 ◽  
Author(s):  
Felix Brück ◽  
Kevin Schnabel ◽  
Tim Mansfeldt ◽  
Harald Weigand

2020 ◽  
Vol 11 (1) ◽  
pp. 107
Author(s):  
B. Simões ◽  
P. R. da Silva ◽  
R. V. Silva ◽  
Y. Avila ◽  
J. A. Forero

This study aims to evaluate the potential of incorporating fly ash (FA) and municipal solid waste incinerator bottom ash (MIBA) as a partial substitute of cement in the production of self-compacting concrete mixes through an experimental campaign in which four replacement levels (i.e., 10% FA + 20% MIBA, 20% FA + 10% MIBA, 20% FA + 40% MIBA and 40% FA + 20% MIBA, apart from the reference concrete) were considered. Compressive and tensile strengths, Young’s modulus, ultra-sonic pulse velocity, shrinkage, water absorption by immersion, chloride diffusion coefficient and electrical resistivity were evaluated for all concrete mixes. The results showed a considerable decline in both mechanical and durability-related performances of self-compacting concrete with 60% of substitution by MIBA mainly due to the aluminium corrosion chemical reaction. However, workability properties were not significantly affected, exhibiting values similar to those of the control mix.


2008 ◽  
Vol 1107 ◽  
Author(s):  
Evelien Martens ◽  
Diederik Jacques ◽  
Tom Van Gerven ◽  
Lian Wang ◽  
Dirk Mallants

AbstractIn this study, Ca, Mg, Al, and Pb concentrations leached from uncarbonated and carbonated ordinary Portland cement – dried waste incinerator bottom ash samples during single extraction tests (EN12457 test) at a pH from 1 to 12, were modelled using the geochemical code PHREEQC. A good agreement was found between modelling results and experiments in terms of leached concentrations for Ca, Mg, and Al by defining a single set of pure mineralogical phases for both the uncarbonated and carbonated (three levels) samples. The model also predicted well the observed decrease in Ca leaching with increasing carbonation. Modelling results further revealed that leaching of Pb is not controlled by dissolution/precipitation of pure Pb containing minerals only (carbonates and (hydr)oxides). The addition of solid solutions (calcite-cerrusite and gibbsite-ferrihydrite-litharge solid solutions) and adsorption reactions on amorphous Fe- and Al-oxides improved the model representation of the experimentally observed amphoteric leaching profile of Pb from the cementitious material.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 489
Author(s):  
Nitipong Soponpongpipat ◽  
Suwat Nanetoe ◽  
Paisan Comsawang

The small-scale rotating drum reactor (SS-RDR) was designed and constructed without using purge gas for the purpose of household application. The thermal and torrefaction characteristics of SS-RDR were studied and compared with other reactor types. It was found that the heat loss at the reactor wall and heat loss from exhaust gas of the SS-RDR were in the range of 6.3–12.4% and 27.9–42.8%, respectively. The increase of flue gas temperature resulted in the decrease of heat loss at the reactor wall and the increase of heat loss from exhaust gas. The heating rate of the SS-RDR was in the range of 7.3–21.4 °C/min. The higher heating value (HHV) ratio, mass yield, and energy yield ofthe SS-RDR were in the range of 1.2–1.6, 35.0–81.0%, and 56.2–96.5%, respectively. A comparison of torrefaction characteristics of various reactor types on HHV ratio-mass yield-iso-energy yield diagram indicated that the torrefaction characteristics of the SS-RDR were better than that of the rotating drum reactor with purge gas.


RSC Advances ◽  
2018 ◽  
Vol 8 (67) ◽  
pp. 38701-38705
Author(s):  
Qingna Kong ◽  
Jun Yao ◽  
Qian Yang ◽  
Dongshen Shen ◽  
Yuyang Long

A new approach including weathering treatment and nano-silica filling was employed to promote the engineering properties of municipal solid waste incinerator (MSWI) bottom ash.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wen-Bing Li ◽  
Jun Yao ◽  
Zaffar Malik ◽  
Gen-Di Zhou ◽  
Ming Dong ◽  
...  

The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI) bottom ash (BA) codisposed with municipal solid waste (MSW) on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V) in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w), while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V) could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V)) and leachate recirculation.


Sign in / Sign up

Export Citation Format

Share Document