Kinetics of methane production during anaerobic fermentation of chicken manure with sawdust and fungi pre-treated wheat straw

2020 ◽  
Vol 102 ◽  
pp. 170-178 ◽  
Author(s):  
Darja Pečar ◽  
Franc Pohleven ◽  
Andreja Goršek
2020 ◽  
Vol 14 (4) ◽  
pp. 551-557
Author(s):  
Yongku Li ◽  
Xiaomin Hu ◽  
Lei Feng

The changing parameters, as the biogas production rate, the methane production rate, the cumulative biogas amount, the cumulative methane amount, the biogas composition, pH etc. in high temperature anaerobic fermentation of chicken manure and stalks were analyzed by experiments with different mass ratios of chicken manure or livestock manure and stalks with a high C/N ratio. The methane production mechanism of high temperature anaerobic digestion of chicken manure and stalks was discussed in detail. It showed that not only the biogas production rates but also the methane production rates of R1–R7 demonstrated the trend of initial increase and then decrease after 50 d of high temperature anaerobic digestion. Besides, the gas production of R1 with pure chicken manure stopped on the 30th d of the reaction. The gas production of other groups R2–R7 also stopped on the corresponding 34th, 36th, 36th, 37th, 37th, and 37th day, respectively. At the end of the reaction, the cumulative biogas amounts and the cumulative methane amounts of R1–R7 were 411.58 and 269.54, 459.91 and 314.41, 425.32 and 294.11, 401.85 and 272.54, 382.63 and 257.07, 363.04 and 218.16, and 257.15 and 160.10 N ml/(g VS). The biogas slurry pH of R1–R7 all demonstrated a trend of initial decrease and then increase, e. g., pH of R2 reached the minimum of 5.94 on the 5th day. pH values of other groups were between 6.01 and 6.39. After the addition of 4 g of sodium bicarbonate on the 7th day, biogas slurry pH of R1–R7 all increased. pH was maintained between 7.16 and 7.44 until the end of the reaction.


Author(s):  
Victor Polishchuk ◽  
◽  
Sergey Shvorov ◽  
Nikolay Zablodskiy ◽  
Piotr Kucheruk ◽  
...  

The work is aimed at increasing the biogas yield rate at biogas plants by means of codigestion poultry manure in combination with extruded wheat straw. To achieve this goal a series of batch tests were performed to study the yields of biogas and CH4 in anaerobic fermentation of mixtures of manure with extruded wheat straw. The working hypothesis of the study was that the wheat straw addition would allow optimizing carbon to nitrogen ratio reducing thus the inhibitory effect of ammonium nitrogen contained in poultry manure on the digestion process. The most important result of the study consisted in the development of a methodology for determining the efficient ratios of extruded straw to poultry manure, at which the highest rate of methane yield was ensured. The two series of the batch assays at 36°C were performed to study the effect of the straw addition to chicken manure at high and low initial volatile solids concentrations. In each series, three types of mixtures were prepared – with 100%, 65% and 35% of poultry manure by volatile solids content in the combination with wheat straw pellets. The significance of the research results was in the fact that the use of extruded straw together with chicken manure could increase the rate of methane yield by almost two times, compared to the fermentation of only poultry manure. The positive effect of wheat straw addition to poultry manure was found in mixtures with a high initial volatile solids concentration, and hence, a high concentration of nitrogen.


2018 ◽  
Vol 38 ◽  
pp. 01048 ◽  
Author(s):  
Xin Yuan Liu ◽  
Jing Jing Wang ◽  
Jia Min Nie ◽  
Nan Wu ◽  
Fang Yang ◽  
...  

This paper performs a batch experiment for pre-acidification treatment and methane production from chicken manure by the two-stage anaerobic fermentation process. Results shows that the acetate was the main component in volatile fatty acids produced at the end of pre-acidification stage, accounting for 68% of the total amount. The daily biogas production experienced three peak period in methane production stage, and the methane content reached 60% in the second period and then slowly reduced to 44.5% in the third period. The cumulative methane production was fitted by modified Gompertz equation, and the kinetic parameters of the methane production potential, the maximum methane production rate and lag phase time were 345.2 ml, 0.948 ml/h and 343.5 h, respectively. The methane yield of 183 ml-CH4/g-VSremoved during the methane production stage and VS removal efficiency of 52.7% for the whole fermentation process were achieved.


Author(s):  
Meneses-Quelal W.O. ◽  
Velázquez-Martí B.

The indiscriminate generation of slaughterhouse waste and agricultural waste can present pollution problems in the environment. An alternative to counteract these problems is the anaerobic digestion of waste through the production of biogas and methane as clean and renewable energy. In this sense, this study aimed to optimize methane production from anaerobic codigestion of slaughterhouse waste from cattle and wheat straw. The treatments were evaluated using anaerobic sludge as inoculum from the wastewater treatment plant of the city of Ibarra. The tests were carried out under mesophilic conditions (38°C) in digesters with a useful volume of 186 ml. The influence of the substrate concentration was evaluated by anaerobically digesting 45 samples at different concentrations (5, 10 and 15 g VS/l) with a substrate/inoculum ratio of 1:2. The highest accumulated methane yield occurred in the digesters composed of 15 g VS/l. The maximum methane production was 320.48 Nml/g VS. The kinetics of the tests were adjusted with the cone model, where there were correlations greater than 99%. Keywords: biogas, methane, codigestion, synergy, inoculum, kinetics. Resumen La generación indiscriminada de residuos de matadero y desechos agrícolas pueden presentar problemas de contaminación en el medio ambiente. Una alternativa para contrarrestar estos problemas es la digestión anaeróbica de los desechos mediante la produción de biogás y metano como energía limpia y renovable. En este sentido el objetivo de este estudio es la optimización de la producción de metano a partir de la codigestión anaeróbica de residuos de matadero de ganado vacuno y paja de trigo. Los tratamientos se evaluaron empleando como inóculo lodo anaerobio de la planta de tratamiento de aguas residuales de la ciudad de Ibarra. Los ensayos se realizaron en condiciones mesofílicas (38°C) en digestores de 186 ml de volumen útil. La influencia de la concentración del sustrato se evaluó digiriendo anaeróbicamente 45 muestras a diferentes concentraciones (5, 10 y 15 g SV/l) con una relación sustrato/inóculo de 1:2. El mayor rendimiento acumulado de metano se produjo en los digestores compuestos por 15 g SV/l. La producción máxima de metano fue de 320,48 Nml/g SV. La cinética de los ensayos se ajustó con el modelo del cono, donde se tuvo correlaciones superiores al 99%. Palabras Clave: biogás, metano, codigestión, sinergia, inóculo, cinética.


2021 ◽  
Vol 15 (5) ◽  
pp. 621-628
Author(s):  
Lei Feng ◽  
Huisong Gu ◽  
Xiaofei Zhen

Anaerobic fermentation experiments were performed using combinations of chicken manure and straw at a temperature of 37±0.5 °C for 70 d. In this investigation, system stability and methane production were analyzed using the Logistic model. According to our results, the highest cumulative methane yield was 292.87 mL/g VS at a straw ratio of 3%. This value was 17.43% higher than the one obtained using pure chicken manure. In addition, a positive correlation between ammonia concentration and content of chicken manure was observed. At the end of the reaction, pH values in the four groups were between 7.0 and 8.0. However, pH in the M2 group was significantly higher than that observed in the rest of the groups. Data also indicated that hydrolase activities were positively correlated with SCOD concentrations. In this context, cellulase activity reached the highest value on day 40. Proteinase activity presented two peaks on days 20 and 40. In the case of lipase, activities and amylase initially increased and later decreased, but the change is small. According to the results of the Logistic model, the highest methane production potential was of 404.41 mL/g VS, at a straw proportion of 3%. In addition, the highest daily methane yield was 6.13 mL/g VS.


2014 ◽  
Vol 7 (1) ◽  
pp. 45 ◽  
Author(s):  
Roger Ibbett ◽  
Sanyasi Gaddipati ◽  
Darren Greetham ◽  
Sandra Hill ◽  
Greg Tucker

1998 ◽  
Vol 18 (1) ◽  
pp. 69-82 ◽  
Author(s):  
I. Gonzalo Epelde ◽  
C. T. Lindgren ◽  
M. E. Lindström

Sign in / Sign up

Export Citation Format

Share Document