scholarly journals Effectiveness of Adding Extruded Wheat Straw to Poultry Manure to Increase the Rate of Biogas Yield

Author(s):  
Victor Polishchuk ◽  
◽  
Sergey Shvorov ◽  
Nikolay Zablodskiy ◽  
Piotr Kucheruk ◽  
...  

The work is aimed at increasing the biogas yield rate at biogas plants by means of codigestion poultry manure in combination with extruded wheat straw. To achieve this goal a series of batch tests were performed to study the yields of biogas and CH4 in anaerobic fermentation of mixtures of manure with extruded wheat straw. The working hypothesis of the study was that the wheat straw addition would allow optimizing carbon to nitrogen ratio reducing thus the inhibitory effect of ammonium nitrogen contained in poultry manure on the digestion process. The most important result of the study consisted in the development of a methodology for determining the efficient ratios of extruded straw to poultry manure, at which the highest rate of methane yield was ensured. The two series of the batch assays at 36°C were performed to study the effect of the straw addition to chicken manure at high and low initial volatile solids concentrations. In each series, three types of mixtures were prepared – with 100%, 65% and 35% of poultry manure by volatile solids content in the combination with wheat straw pellets. The significance of the research results was in the fact that the use of extruded straw together with chicken manure could increase the rate of methane yield by almost two times, compared to the fermentation of only poultry manure. The positive effect of wheat straw addition to poultry manure was found in mixtures with a high initial volatile solids concentration, and hence, a high concentration of nitrogen.

Author(s):  
Fei Wang ◽  
Mengfu Pei ◽  
Ling Qiu ◽  
Yiqing Yao ◽  
Congguang Zhang ◽  
...  

Poultry manure is the main source of agricultural and rural non-point source pollution, and its effective disposal through anaerobic digestion (AD) is of great significance; meanwhile, the high nitrogen content of chicken manure makes it a typical feedstock for anaerobic digestion. The performance of chicken-manure-based AD at gradient organic loading rates (OLRs) in a continuous stirred tank reactor (CSTR) was investigated herein. The whole AD process was divided into five stages according to different OLRs, and it lasted for 150 days. The results showed that the biogas yield increased with increasing OLR, which was based on the volatile solids (VS), before reaching up to 11.5 g VS/(L·d), while the methane content was kept relatively stable and maintained at approximately 60%. However, when the VS was further increased to 11.5 g VS/(L·d), the total ammonia nitrogen (TAN), pH, and alkalinity (CaCO3) rose to 2560 mg·L−1, 8.2, and 15,000 mg·L−1, respectively, while the volumetric biogas production rate (VBPR), methane content, and VS removal efficiency decreased to 0.30 L·(L·d)−1, 45%, and 40%, respectively. Therefore, the AD performance immediately deteriorated and ammonia inhibition occurred. Further analysis demonstrated that the microbial biomass yield and concentrations dropped dramatically in this period. These results indicated that the AD stayed steady when the OLR was lower than 11.5 g VS/(L·d); this also provides valuable information for improving the efficiency and stability of AD of a nitrogen-rich substrate.


2000 ◽  
Vol 135 (1) ◽  
pp. 57-64 ◽  
Author(s):  
H. NIMENYA ◽  
A. DELAUNOIS ◽  
S. BLODEN ◽  
D. LA DUONG ◽  
B. CANART ◽  
...  

The production of NH+4-N following in vitro incubation of cattle urine was monitored for 24 h in the presence of ampicillin sodium salt (0, 32, 64, 128 mg/l), hydroquinone (0, 16·7, 33·4, 66·8 mg/l), wheat straw (0, 3·3, 6·6, 13·2 g/l) or spruce sawdust (0, 3·3, 6·6, 13·2 g/l) with (20 IU) or without urease. Each concentration of ampicillin, hydroquinone, wheat straw or spruce sawdust was tested in triplicate.The equipment consisted of Woulff flasks containing 300 ml of a buffered solution (0·02 M; pH 7·50) with 1 ml of cattle urine. The cattle urine was characterized by measuring the main nitrogen contents, which were 6·52 mg total-N/ml, 5·96 mg urea-N/ml and 0·026 mg ammonium-N/ml. The initial pH of urine was 7·84. Ammonium and nitrate concentrations, and pH were monitored at zero- time and after 3, 6 and 24 h of incubation with the cattle urine.The addition of urease to the flasks containing urine induced a significant increase in the production of ammonium-N, from 1·83 to 6·32 mg NH+4-N/flask after 24 h of incubation.In the presence of urease, an inhibitory effect was recorded in NH+4-N production with ampicillin and spruce sawdust. In contrast, hydroquinone inhibited urease activity and wheat straw adsorbed the NH+4-N produced, both causing a dose-dependent relationship.In the absence of urease, ampicillin, hydroquinone, wheat straw or spruce sawdust caused a dose- related decrease in NH+4-N production. However, the highest amounts of wheat straw (6·6 and 13·2 g/flask) exhibited a temporary increase in NH+4-N production during the first 6 h. This is probably due to a generation of extra NH+4-N as compared to the control flasks without straw. However, at 24 h, the situation paralleled the other materials.Although pH increased approximately from 7·50 to 7·65 during the hydrolysis of urea in the presence of urease, no gaseous ammonia was volatilized into a 0·1 M HCl flask. Moreover, no increase in nitrate concentration was found during the incubation.The present results suggest that ampicillin, hydroquinone and spruce sawdust could be used in order to reduce NH+4-N production from cattle urine. The NH+4-N already produced could probably be absorbed on wheat straw.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1007A-1007
Author(s):  
Muddappa Rangappa ◽  
Harbans Bhardwaj ◽  
Harry Dalton

An on-farm animal manure, such as chicken manure, can be a source of nutrients for the growth and production of agricultural crops. However, use of manures at rates that are considered adequate for crop production may cause excessive accumulation of phosphorus (P) and also result in leaching of nitrogen (N), thus leading to potential pollution of ground and surface water. Composting of manures with a carbon (C) source can reduce P and N to manageable levels to support production of crops. In order to determine the potential of composted manure for crop production, we studied growth and production of sweet corn by using poultry manure composted with a carbon source of crimson clover hay or wheat straw. These experiments, conducted during 2002 and 2003, compared six treatments: 1) uncomposted chicken manure alone; 2) composted with wheat straw turned weekly; 3) composted with wheat straw turned bi-weekly; 4) composted with crimson clover hay turned weekly; 5) composted with crimson clover hay turned bi-weekly; and 6) a control with a commercial recommendation rate of N fertilizer. These treatments resulted in 9244; 13,866; 15,688; 16,734; and 11,977 marketable ears/acre, respectively, indicating significant superiority of treatments 4 and 5 over all others. Similar results were obtained for ear length, ear fresh weight, and plant height. Results indicated that composting of poultry litter with wheat straw or crimson clover hay is a viable way to utilize poultry manure for production of sweet corn and other agricultural crops. This study implies that composting of on-farm animal manure with organic material, such as hay and straw, could play an important role in development of an environmentally friendly, economically feasible, and sustainable organic production of agricultural crops.


Author(s):  
Vitalij Kolodynskij ◽  
Pranas Baltrėnas

Biogas is a fuel, which can be produced from a renewable energy source – biomass. Such a gas can be freely used in small farms or food industry to produce heat or electricity. Two main components of biogas – metahne CH4 and carbon dioxide CO2. In some case, if biomass has a big amount of proteins, there can be an aggressive to different constructions gas – hydrogen sulphide H2S in biogas composition. Also, there can be other gases, such as ammonia or hydrogen, but their concentrations are very low. Nowadays it’s extremely important to find a biomass with high energy potential not only to produce “green” energy, but to save the environment from gaseous emissions (greenhouse gases) and soil pollution. The aim of this study – to examine biogas yield and quality, which was produced from chicken manure biomass. To implement research, a small-sized bioreactor of periodic operation (total volume – 30 l, operating volume – 20 l) was used. One of the important parameters of biomass is total quality of volatile solids (VS) and quantity of organic matter in one liter of biomass (organic load – VS/l). In this research, there were examined two chicken manure biomasses with different VS and VS/l. The first one reached relatively 3188 g and 160 g/l. The second’s biomass volatile solids quantity reached 1993 g and organic load was 100 g/l. Both biomasses were of the same type and organic matter (chicken manure with 39.85 % concentration of organic matter). During the experimental research, the temperature of anaerobic digestion was mesophilic (35–37 oC). The operation of bioreactor was periodic, this means, that the biomass was held in anaerobic condition till the complete degasation without any partial refill. The total experiment duration reached 66 days. It was found, that the maximum CH4 concentration reached 72.2% (biomass with organic load 100 g/l). To compare biogas yield from biomasses with different organic loading, it must be recalculated to an amount of biogas produced per day from 1 kg of volatile solids (l/d/kg VS). By implementing gained data analysis, it was discovered, that the maximum biogas yield is 7.8 l/d/kg VS (biomass with organic load 100 g/l). According to this research, it will be possible to create and use a small-sized bioreactor with chicken manure biomass in small farms to reduce pollution and generate energy.


2017 ◽  
Vol 13 (2) ◽  
pp. 125-134 ◽  
Author(s):  
Ádám Nándor Makk ◽  
Tamás Rétfalvi ◽  
Tamás Hofmann

Abstract Fossil fuel depletion has led to an increasing number of research studies and applications focusing on renewable energy, such as different types of biomass. Lignocellulosic biomass represents an abundant source of biomass suitable for energy production in various forms. The present research investigates the application possibility of pedunculate oak bark (Quercus petrea (Matt.) Liebl.) for the production of biogas via anaerobic digestion. This research has significant novelty, as only a few examples on the utilization of tree bark wastes for the production of biogas can be found in the scientific literature. One of the key factors of increasing biogas yield is the efficient hydrolysis of the basic material, which is achieved by different pretreatment methods. In this study, oak bark was pretreated by microwave energy, by extraction, and by the combination of these two methods. The semi-continuous thermophylic anaerobic digestion of untreated oak bark resulted a 76.3 ml/g volatile solid specific methane yield over a 50-day period, which was not significantly lower than methane yield gained from pretreated basic material. Results indicated that oak bark is suitable for the production of biogas even without the application of the investigated pretreatment techniques. As extraction of oak bark does not impair biogas production, the complex biorefinery utilization of oak bark in the form of extraction bark polyphenols and the subsequent anaerobic fermentation of lignocellulosic residue can be accomplished in the future.


2018 ◽  
Author(s):  
◽  
Nhlanganiso Ivan Madondo

The anaerobic process is increasingly becoming a subject for many as it reduces greenhouse gas emissions and recovers carbon dioxide energy as methane. Even though these benefits are attainable, proper control and design of the process variables has to be done in order to optimize the system productivity and improve stability. The aim of this research was to optimize methane and biogas yields on the anaerobic co-digestion of sewage sludge using bio-chemical substrates as co-substrates. The first objective was to find the bio-chemical substrate that will generate the highest biogas and methane yields. The anaerobic digestion of these substrates was operated using 6 L digesters at 37.5℃. The substrate which generated the highest biogas and methane yield in the first batch experiment was then used for the second batch test. The objective was to optimize the anaerobic conditions (substrate to inoculum ratio, co-substrate concentration and temperature) in-order to optimize the biogas and methane yields. The second batch test was achieved using the conventional One-Factor-At-A-Time (OFAT) and the Design of Experiment (DOE) methods. Final analysis showed that the bio-chemical substrates could be substrates of interest to biogas generators. Amongst the substrates tested in the first batch experiment glycerol (Oleo-Chemical Product waste) generated the highest methane and biogas yields of 0.71 and 0.93 L. (g volatile solids added)-1, respectively. It was believed that glycerol contains significant amount of other organic substances such as lipids that have higher energy content than the other bio-chemical substrates, thus generating larger biogas and methane yields. Moreover, digestion of sewage sludge alone produced biogas yields of 0.19 L /g VS and 0.33 L/g COD, and methane yields of 0.16 L/g VS and 0.28 L/g COD. Generally, co-digestion yields were higher than digestion yields of sewage alone. Using the OFAT method the results of the second batch test on glycerol demonstrated highest amounts of volatile solids (VS) reduction, chemical oxygen demand (COD) reduction, biogas yield and methane yield of 99.7%, 100%, 0.94 L (g VS added)-1 and 0.75 L (g VS added)-1 at a temperature, substrate to inoculum ratio and glycerol volume of 50℃, 1 (on VS basis) and 10 mL, respectively. Above 22 mL and substrate to inoculum ratio of 1, the process was inhibited. The DOE results suggested that the highest methane and biogas yields were 0.75 and 0.94 L (g VS added)-1, respectively. These results were similar to the OFAT results, thus the DOE software may be used to define the biogas and methane yields equations for glycerol. In conclusion, anaerobic co-digestion of bio-chemical substrates as co-substrates on sewage sludge was successfully applied to optimize methane and biogas yields.


2012 ◽  
Vol 66 (11) ◽  
pp. 2336-2342 ◽  
Author(s):  
M. Cornell ◽  
C. J. Banks ◽  
S. Heaven

Co-digestion of cattle slurry and maize has been shown to have benefits for both, improving the biogas yield of the slurry and stability of digestion of the maize. The effect of increasing the total loading rate from 3 to 6 g VS l–1 day–1 on the co-digestion of cattle slurry and maize, mixed at equal volatile solids volumes, was investigated in laboratory-scale continuously stirred digesters. These were compared with similar digesters evaluating the increase of 1.5 to 3 g VS l−1 day−1 loading rates of slurry and maize digested separately. Compared with mono-digestion of the substrates, where the digestion of maize failed at loading rates greater than 2.5 g VS l−1 day−1, the co-digestion of cattle slurry and maize was feasible at all the loading rates tested with an increase in the volumetric methane yield occurring with loading rate. Even at the lowest rate of loading, the addition of equal amounts of volatile solids of maize to slurry leads to an increase in volumetric methane yield of 219%.


2021 ◽  
Vol 15 (5) ◽  
pp. 621-628
Author(s):  
Lei Feng ◽  
Huisong Gu ◽  
Xiaofei Zhen

Anaerobic fermentation experiments were performed using combinations of chicken manure and straw at a temperature of 37±0.5 °C for 70 d. In this investigation, system stability and methane production were analyzed using the Logistic model. According to our results, the highest cumulative methane yield was 292.87 mL/g VS at a straw ratio of 3%. This value was 17.43% higher than the one obtained using pure chicken manure. In addition, a positive correlation between ammonia concentration and content of chicken manure was observed. At the end of the reaction, pH values in the four groups were between 7.0 and 8.0. However, pH in the M2 group was significantly higher than that observed in the rest of the groups. Data also indicated that hydrolase activities were positively correlated with SCOD concentrations. In this context, cellulase activity reached the highest value on day 40. Proteinase activity presented two peaks on days 20 and 40. In the case of lipase, activities and amylase initially increased and later decreased, but the change is small. According to the results of the Logistic model, the highest methane production potential was of 404.41 mL/g VS, at a straw proportion of 3%. In addition, the highest daily methane yield was 6.13 mL/g VS.


2017 ◽  
Vol 1 (9) ◽  
Author(s):  
Ervin Karić ◽  
Ivan Petrić ◽  
Nesib Mustafić

The aim of this study was to determine the composting kinetics for mixture ofpoultry manure and wheat straw based on the volatile solids content.Experimental data was fitted with the first-order and the nth-order kinetic model.The nth-order kinetic model showed better prediction performance than the firstorderkinetic model. For the first-order kinetic model, maximum and meandifferences between experimental and simulation results for the content ofvolatile solids were 5.43% and 3.00%, for the first reactor, and 4.68% and2.12% for the second reactor, respectively, for the nth-order kinetic model,maximum and mean differences were 4.92% and 1.68%, for the first reactor,and 4.09% and 1.42% for the second reactor, respectively.


Sign in / Sign up

Export Citation Format

Share Document