Anaerobic Fermentation of Combined Chicken Manure and Straw on a Sequencing Batch Reactor: Analysis of Stability and Numerical Modeling

2021 ◽  
Vol 15 (5) ◽  
pp. 621-628
Author(s):  
Lei Feng ◽  
Huisong Gu ◽  
Xiaofei Zhen

Anaerobic fermentation experiments were performed using combinations of chicken manure and straw at a temperature of 37±0.5 °C for 70 d. In this investigation, system stability and methane production were analyzed using the Logistic model. According to our results, the highest cumulative methane yield was 292.87 mL/g VS at a straw ratio of 3%. This value was 17.43% higher than the one obtained using pure chicken manure. In addition, a positive correlation between ammonia concentration and content of chicken manure was observed. At the end of the reaction, pH values in the four groups were between 7.0 and 8.0. However, pH in the M2 group was significantly higher than that observed in the rest of the groups. Data also indicated that hydrolase activities were positively correlated with SCOD concentrations. In this context, cellulase activity reached the highest value on day 40. Proteinase activity presented two peaks on days 20 and 40. In the case of lipase, activities and amylase initially increased and later decreased, but the change is small. According to the results of the Logistic model, the highest methane production potential was of 404.41 mL/g VS, at a straw proportion of 3%. In addition, the highest daily methane yield was 6.13 mL/g VS.

2020 ◽  
Vol 14 (4) ◽  
pp. 551-557
Author(s):  
Yongku Li ◽  
Xiaomin Hu ◽  
Lei Feng

The changing parameters, as the biogas production rate, the methane production rate, the cumulative biogas amount, the cumulative methane amount, the biogas composition, pH etc. in high temperature anaerobic fermentation of chicken manure and stalks were analyzed by experiments with different mass ratios of chicken manure or livestock manure and stalks with a high C/N ratio. The methane production mechanism of high temperature anaerobic digestion of chicken manure and stalks was discussed in detail. It showed that not only the biogas production rates but also the methane production rates of R1–R7 demonstrated the trend of initial increase and then decrease after 50 d of high temperature anaerobic digestion. Besides, the gas production of R1 with pure chicken manure stopped on the 30th d of the reaction. The gas production of other groups R2–R7 also stopped on the corresponding 34th, 36th, 36th, 37th, 37th, and 37th day, respectively. At the end of the reaction, the cumulative biogas amounts and the cumulative methane amounts of R1–R7 were 411.58 and 269.54, 459.91 and 314.41, 425.32 and 294.11, 401.85 and 272.54, 382.63 and 257.07, 363.04 and 218.16, and 257.15 and 160.10 N ml/(g VS). The biogas slurry pH of R1–R7 all demonstrated a trend of initial decrease and then increase, e. g., pH of R2 reached the minimum of 5.94 on the 5th day. pH values of other groups were between 6.01 and 6.39. After the addition of 4 g of sodium bicarbonate on the 7th day, biogas slurry pH of R1–R7 all increased. pH was maintained between 7.16 and 7.44 until the end of the reaction.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1829 ◽  
Author(s):  
Na Duan ◽  
Xia Ran ◽  
Ruirui Li ◽  
Panagiotis Kougias ◽  
Yuanhui Zhang ◽  
...  

Dilution is considered to be a fast and easily applicable pretreatment for anaerobic digestion (AD) of chicken manure (CM), however, dilution with fresh water is uneconomical because of the water consumption. The present investigation was targeted at evaluating the feasibility and process performance of AD of CM diluted with algal digestate water (AW) for methane production to replace tap water (TW). Moreover, the kinetics parameters and mass flow of the AD process were also comparatively analyzed. The highest methane production of diluted CM (104.39 mL/g volatile solid (VS)) was achieved with AW under a substrate concentration of 8% total solid (TS). The result was markedly higher in comparison with the group with TW (79.54–93.82 mL/gVS). Apart from the methane production, considering its energy and resource saving, nearly 20% of TW replaced by AW, it was promising substitution to use AW for TW to dilute CM. However, the process was susceptible to substrate concentration, inoculum, as well as total ammonia and free ammonia concentration.


Author(s):  
Victor Polishchuk ◽  
◽  
Sergey Shvorov ◽  
Nikolay Zablodskiy ◽  
Piotr Kucheruk ◽  
...  

The work is aimed at increasing the biogas yield rate at biogas plants by means of codigestion poultry manure in combination with extruded wheat straw. To achieve this goal a series of batch tests were performed to study the yields of biogas and CH4 in anaerobic fermentation of mixtures of manure with extruded wheat straw. The working hypothesis of the study was that the wheat straw addition would allow optimizing carbon to nitrogen ratio reducing thus the inhibitory effect of ammonium nitrogen contained in poultry manure on the digestion process. The most important result of the study consisted in the development of a methodology for determining the efficient ratios of extruded straw to poultry manure, at which the highest rate of methane yield was ensured. The two series of the batch assays at 36°C were performed to study the effect of the straw addition to chicken manure at high and low initial volatile solids concentrations. In each series, three types of mixtures were prepared – with 100%, 65% and 35% of poultry manure by volatile solids content in the combination with wheat straw pellets. The significance of the research results was in the fact that the use of extruded straw together with chicken manure could increase the rate of methane yield by almost two times, compared to the fermentation of only poultry manure. The positive effect of wheat straw addition to poultry manure was found in mixtures with a high initial volatile solids concentration, and hence, a high concentration of nitrogen.


2019 ◽  
Vol 11 (5) ◽  
pp. 1269 ◽  
Author(s):  
Mohammed Osman ◽  
Shao Xiaohou ◽  
Deling Zhao ◽  
Amir Basheer ◽  
Hongmei Jin ◽  
...  

This study investigated the potentiality of methane production from alginate-extracted (AEWLJ) and non-extracted (NAEWLJ) waste of Laminaria japonica through batch anaerobic fermentation in mono- and co-digestion with rice straw (RS) at different mixing ratios. Optimal C/N ratio was demonstrated, and system stability was monitored in terms of the total ammonia nitrogen, total volatile fatty acids, and pH throughout the digestion period. The results show that the combination of AEWLJ/RS at 67% mixing ratio generated the highest biogas yield of 247 NmL/gVS, which was 36% higher than the AEWLJ alone. The synergetic effect was clearly observed leading to an increase in the total methane yield up to 78% and 88%, respectively, for arrays of AEWLJ/RS and NAEWLJ/RS. The kinetic model showed a high coefficient of determination (R2 ≥ 0.9803) when the modified Gompertz model was applied to predict methane production. These outcomes support the possibility of an integrated biorefinery approach to attain value-added products in order to achieve circular economies.


2018 ◽  
Vol 38 ◽  
pp. 01048 ◽  
Author(s):  
Xin Yuan Liu ◽  
Jing Jing Wang ◽  
Jia Min Nie ◽  
Nan Wu ◽  
Fang Yang ◽  
...  

This paper performs a batch experiment for pre-acidification treatment and methane production from chicken manure by the two-stage anaerobic fermentation process. Results shows that the acetate was the main component in volatile fatty acids produced at the end of pre-acidification stage, accounting for 68% of the total amount. The daily biogas production experienced three peak period in methane production stage, and the methane content reached 60% in the second period and then slowly reduced to 44.5% in the third period. The cumulative methane production was fitted by modified Gompertz equation, and the kinetic parameters of the methane production potential, the maximum methane production rate and lag phase time were 345.2 ml, 0.948 ml/h and 343.5 h, respectively. The methane yield of 183 ml-CH4/g-VSremoved during the methane production stage and VS removal efficiency of 52.7% for the whole fermentation process were achieved.


2020 ◽  
Vol 10 (21) ◽  
pp. 7825
Author(s):  
Yevhenii Shapovalov ◽  
Sergey Zhadan ◽  
Günther Bochmann ◽  
Anatoly Salyuk ◽  
Volodymyr Nykyforov

Providing anaerobic digestion is a prospective technology for utilizing organic waste, however, for waste with a high content of nitrogen such as manure, dilution is necessary to decrease the ammonia inhibition effect which leads to the production of a huge effluent amount which is difficult to use. Dry anaerobic digestion has some advantages such as reduced reactor volume, higher volumetric methane yield, lower energy consumption for heating, less wastewater production, and lower logistic costs for fertilizers. These factors generate interest in using it for treatment of even high-nitrogen substrates. The purpose of this work was to analyze different dry anaerobic digestion technologies, the features of dry anaerobic digestion, laboratory studies on chicken manure dry anaerobic digestion, and methods of reducing inhibitors’ effects. Nowadays, there are no dry anaerobic industrial plants working on chicken manure. However, studies on dry anaerobic digestion of chicken manure have proven the possibility of methane production under fermentation of chicken manure with high total solids content, but the process has been described as being unstable. Co-fermentation, ammonium/ammonia removal, and adaptation of the microbial consortium have been used to decrease the effect of ammonia inhibition. A prospective way for ammonia concentration control is absorption using a non-volatile sorbent located in the reactor. It decreases ammonia content during wet anaerobic digestion by 33% and it is characterized by having a positive economic effect. Therefore, dry anaerobic fermentation of chicken manure is possible, but there is still no efficient way to provide it. The results of this article should be helpful in the selection of anaerobic digestion technology for treating chicken manure.


2018 ◽  
Vol 7 (3.23) ◽  
pp. 36 ◽  
Author(s):  
Roslinda Seswoya ◽  
Ahmad Tarmizi Abdul Karim ◽  
Nur Aiza Darnak ◽  
Muhammad Fahmi Abd Rahman

The anaerobic digestibility of a targeted substrate, measured as methane yield is conducted via biochemical methane potential (BMP). In this study, the batch BMP test was conducted using Automatic Methane Potential Test System (AMPTS II) for 25 days and focused on the methane production from the digestion of food waste (FW, in the form of raw and diluted) at inoculum to substrate ratio (I/S) ratio of 2:0 and under mesophilic temperature.  The results showed that solids (TS and VS) concentration reduced significantly due to the       dilution. The ultimate methane yields from the digestion of raw FW and diluted FW were 1891.91ml CH4/gVS and 1983.96 ml CH4/gVS respectively. This showed that the dilution significantly improved the methane yield. In addition, the lag phase of the methane yield curve for both BMP tests was less than one (1) day, showing the good biodegradability of FW. The kinetic methane production from laboratory data and Modified Gompertz modelling fitted well. However, the kinetic equation parameters such as Mo, Rm and l from the model were slightly lower based on the observation of the laboratory data. 


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1293
Author(s):  
Gyung-Geun Oh ◽  
Young-Chae Song ◽  
Byung-Uk Bae ◽  
Chae-Young Lee

The bioelectrochemical methane production from acetate as a non-fermentable substrate, glucose as a fermentable substrate, and their mixture were investigated in an anaerobic sequential batch reactor exposed to an electric field. The electric field enriched the bulk solution with exoelectrogenic bacteria (EEB) and electrotrophic methanogenic archaea, and promoted direct interspecies electron transfer (DIET) for methane production. However, bioelectrochemical methane production was dependent on the substrate characteristics. For acetate as the substrate, the main electron transfer pathway for methane production was DIET, which significantly improved methane yield up to 305.1 mL/g chemical oxygen demand removed (CODr), 77.3% higher than that in control without the electric field. For glucose, substrate competition between EEB and fermenting bacteria reduced the contribution of DIET to methane production, resulting in the methane yield of 288.0 mL/g CODr, slightly lower than that of acetate. In the mixture of acetate and glucose, the contribution of DIET to methane production was less than that of the single substrate, acetate or glucose, due to the increase in the electron equivalent for microbial growth. The findings provide a better understanding of electron transfer pathways, biomass growth, and electron transfer losses depending on the properties of substrates in bioelectrochemical methane production.


Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


Sign in / Sign up

Export Citation Format

Share Document