Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates

2006 ◽  
Vol 40 (3) ◽  
pp. 445-452 ◽  
Author(s):  
M.R. Peña ◽  
D.D. Mara ◽  
G.P. Avella
2007 ◽  
Vol 55 (11) ◽  
pp. 121-126 ◽  
Author(s):  
M. von Sperling ◽  
J.G.B. de Andrada ◽  
W.R. de Melo Júnior

A system comprising a UASB reactor, shallow polishing ponds and shallow coarse filters, treating actual wastewater from the city of Belo Horizonte, Brazil, has been evaluated. The main focus of the research was to compare grain sizes and hydraulic loading rates in the coarse filters. Two filters operating in parallel were investigated, with the following grain sizes: Filter 1: 3 to 10 cm; Filter 2: 8 to 20 cm. Two hydraulic loading rates were tested: 0.5 and 1.0 m3/m3.d. The filter with the lower rock size had a better performance than the filter with the larger rock size in the removal of SS and, as a consequence, BOD and COD. A better performance was obtained with the hydraulic loading rate of 0.5 m3/m3.d, as compared to the rate of 1.0 m3/m3.d. The effluent quality during the period with the lower loading rate was very good for discharge into water bodies or for agricultural reuse (median effluent concentrations from Filter 1: BOD: 20 mg/L; COD: 106 mg/L; SS: 28 mg/L; E. coli: 528 MPN/100 mL).


1994 ◽  
Vol 30 (11) ◽  
pp. 25-33 ◽  
Author(s):  
Yoshimasa Watanabe ◽  
Satoshi Okabe ◽  
Tomochika Arata ◽  
Yuji Haruta

A comprehensive wastewater treatment system that accomplishes oxidation of organic matter, nitrification, and denitrification was developed, and its characteristics and performance were investigated. A municipal wastewater was treated by an up-flow aerated biofilter (UAB), in which biofilms were developed on stainless meshes installed horizontally. This UAB exhibited a great potential ability of oxidation of organic matter, SS stabilization, and nitrification due to a unique aeration mechanism giving high DO concentrations with relatively low aeration rates. Another unique feature of the UAB was that attached biofilms on stainless meshes physically filtered out and/or adsorbed suspended solids in the wastewater in addition to the biological oxidation of organic matter. A stable nitrification could be achieved at HRT=10 hours corresponding to a hydraulic loading of 86 L m−2 d−1 and at a ratio of aeration rate to wastewater flow rate (A/W) of 2, which is considerably low as compared to aeration rates of typical activated sludge systems. This UAB system also could handle relatively high hydraulic loading rates. The UAB used in this study still have enough space to install more stainless meshes so as to reduce hydraulic loading rates resulting in the reduction of HRT and aeration rate, which leads to improvement of the system performance as well as reduction of the running cost.


2012 ◽  
Vol 9 ◽  
pp. 57-62
Author(s):  
Fiza Sarwar ◽  
Wajeeha Malik ◽  
Muhammad Salman Ahmed ◽  
Harja Shahid

Abstract: This study was designed using actual effluent from the sugary mills in an Up-flow Anaerobic Sludge Blanket (UASB) Reactor to evaluate treatability performance. The reactor was started-up in step-wise loading rates beginning from 0.05kg carbon oxygen demand (COD)/m3-day to 3.50kg-COD/m3-day. The hydraulic retention time (HRT) was slowly decreased from 96 hrs to eight hrs. It was observed that the removal efficiency of COD of more than 73% can be easily achieved at an HRT of more than 16 hours corresponding to an average organic loading rate (OLR) of 3.0kg-COD/m3-day, at neutral pH and constant temperature of 29°C. The average VFAs (volatile fatty acids) and biogas production was observed as 560mg/L and 1.6L/g-CODrem-d, respectively. The average methane composition was estimated as 62%. The results of this study suggest that the treatment of sugar mills effluent with the anaerobic technology seems to be more reliable, effective and economical.DOI: http://dx.doi.org/10.3126/hn.v9i0.7075 Hydro Nepal Vol.9 July 2011 57-62


2001 ◽  
Vol 44 (4) ◽  
pp. 189-195 ◽  
Author(s):  
J. B. van Lier ◽  
P. N.L. Lens ◽  
L. W. Hulshoff Pol

Stringent environmental laws in Europe and Northern America lead to the development towards closure of the process water streams in pulp and paper mills. Application of a "zero-discharge" process is already a feasible option for the board and packaging paper industry, provided in-line treatment is applied. Concomitant energy conservation inside the mill results in process water temperatures of 50-60°C. Thermophilic anaerobic treatment complemented with appropriate post-treatment is considered as the most cost-effective solution to meet re-use criteria of the process water and to keep its temperature. In the proposed closed-cycle, the anaerobic treatment step removes the largest fraction of the biodegradable COD and eliminates “S” as H2S from the process stream, without the use of additional chemicals. The anaerobic step is regarded as the only possible location to bleed "S" from the process water cycle. In laboratory experiments, the effect of upward liquid velocity (Vupw) and the specific gas loading rate (Vgas) on the S removal capacity of thermophilic anaerobic bio-reactors was investigated. Acidifying, sulphate reducing sludge bed reactors were fed with partly acidified synthetic paper mill wastewater and were operated at 55°C and pH 6. The reactors were operated at organic loading rates up to 50 g COD.l−1.day−1 at COD/SO42- ratios of 10. The effect of Vupw was researched by comparing the performance of a UASB reactor operated at 1.0 m.h−1 and an EGSB reactor, operated at 6.8 m.h−1. The Vupw had a strong effect on the fermentation patterns. In the UASB reactor, acidification yielded H2, acetate and propionate, leading to an accumulation of reducing equivalents. These were partly disposed of by the production of n-butyrate and n-valerate from propionate. In the EGSB reactor net acetate consumption was observed as well as high volumetric gas (CO2 and CH4) production rates. The higher gas production rates in the EGSB reactor resulted in higher S-stripping efficiencies. The effect of Vgas was further researched by comparing 2 UASB reactors which were sparged with N2 gas at a specific gas loading rate of 30 m3.m−2.day−1. In contrast to the regular UASB reactors, the gas-supplied UASB showed a more stable performance when the organic loading rates were increased. Also, the H2S stripping efficiency was 3-4 times higher in the gas-supplied UASB, reaching values of 67%. Higher values were not obtained owing to the relatively poor sulphate reduction efficiencies.


Chemosphere ◽  
2012 ◽  
Vol 87 (3) ◽  
pp. 273-277 ◽  
Author(s):  
Dong Qing Zhang ◽  
Richard M. Gersberg ◽  
Tao Hua ◽  
Junfei Zhu ◽  
Nguyen Anh Tuan ◽  
...  

2005 ◽  
Vol 52 (10-11) ◽  
pp. 273-280 ◽  
Author(s):  
S. Kalyuzhnyi ◽  
M. Gladchenko ◽  
E. Starostina ◽  
S. Shcherbakov ◽  
B. Versprille

The UASB reactor (35°C) was quite efficient for removal of bulk COD (52–74%) from simulated (on the basis of cultivation medium from the first separation process) general effluent of baker's yeast production (the average organic loading rates varied from 8.1 to 16g COD/l/d). The aerobic-anoxic biofilter (19–23°C) can be used for removal of remaining BOD and ammonia from anaerobic effluents; however, it suffered from COD-deficiency to fulfil denitrification requirements. To balance COD/N ratio, some bypass (∼10%) of anaerobically untreated general effluent should be added to the biofilter feed. The application of iron (III)-, aluminium- or calcium-induced coagulation for post-treatment of aerobic-anoxic effluents can fulfil the limits for discharge to sewerage (even for colour mainly exerted by hardly biodegradable melanoidins), however, the required amounts of coagulants were relatively high.


2004 ◽  
Vol 50 (5) ◽  
pp. 67-72 ◽  
Author(s):  
M. Gladchenko ◽  
E. Starostina ◽  
S. Shcherbakov ◽  
B. Versprille ◽  
S. Kalyuzhnyi

The UASB reactor (35°C) was quite efficient for removal of bulk COD (62-67%) even for such high strength and recalcitrant wastewater as the cultivation medium from the first separation process of baker's yeasts (the average organic loading rates varied from 3.7 to 10.3 g COD/l/d). The aerobic-anoxic biofilter (20°C) can be used for removal of remaining BOD and ammonia from strong nitrogenous anaerobic effluents; however, it suffered from COD-deficiency to fulfil denitrification requirements. To balance the COD/N ratio, some bypass of raw wastewater should be added to the biofilter feed. The application of iron chloride coagulation for post-treatment of aerobic effluents may fulfil the discharge limits (even for colour mainly exerted by hardly biodegradable melanoidins) under iron concentrations around 200 mg/l.


2015 ◽  
Vol 72 (11) ◽  
pp. 2034-2044 ◽  
Author(s):  
Rosa Elena Yaya Beas ◽  
Katarzyna Kujawa-Roeleveld ◽  
Jules B. van Lier ◽  
Grietje Zeeman

This research was conducted to study the faecal coliforms removal capacity of downflow hanging sponge (DHS) reactors as a post-treatment for an upflow anaerobic sludge blanket (UASB) reactor. Three long-term continuous laboratory-scale DHS reactors, i.e. a reactor with cube type sponges without recirculation, a similar one with recirculation and a reactor with curtain type sponges, were studied. The porosities of the applied medium were 91%, 87% and 47% respectively. The organic loading rates were 0.86 kgCOD m−3 d−1, 0.53 kgCOD m−3 d−1 and 0.24 kgCOD m−3 d−1 correspondingly at hydraulic loading rates of 1.92 m3 m−2 d−1, 2.97 m3 m−2 d−1 and 1.32 m3 m−2 d−1, respectively (COD: chemical oxygen demand). The corresponding averages for faecal coliform removal were 99.997%, 99.919% and 92.121% respectively. The 1989 WHO guidelines standards, in terms of faecal coliform content for unrestricted irrigation (category A), was achieved with the effluent of the cube type DHS (G1) without recirculation. Restricted irrigation, category B and C, is assigned to the effluent of the cube type with recirculation and the curtain type, respectively. Particularly for organic compounds, the effluent of evaluated DHS reactors complies with USEPA standards for irrigation of so called non-food crops like pasture for milking animals, fodder, fibre, and seed crops.


Sign in / Sign up

Export Citation Format

Share Document