Chlorine injury enhances antibiotic resistance in Pseudomonas aeruginosa through over expression of drug efflux pumps

2019 ◽  
Vol 156 ◽  
pp. 366-371 ◽  
Author(s):  
Ai-ming Hou ◽  
Dong Yang ◽  
Jing Miao ◽  
Dan-yang Shi ◽  
Jing Yin ◽  
...  
2014 ◽  
Vol 21 ◽  
pp. 92
Author(s):  
K. Ganguly ◽  
J.L. Phillips ◽  
M.S. Wren ◽  
P.E. Pardington ◽  
S. Gnanakaran ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Punyawee Dulyayangkul ◽  
Naphat Satapoomin ◽  
Matthew B. Avison ◽  
Nisanart Charoenlap ◽  
Paiboon Vattanaviboon ◽  
...  

Pseudomonas aeruginosa, a well-known cause of nosocomial infection, is frequently antibiotic resistant and this complicates treatment. Links between oxidative stress responses inducing antibiotic resistance through over-production of RND-type efflux pumps have been reported in P. aeruginosa, but this has not previously been associated with MFS-type efflux pumps. Two MFS efflux pumps encoded by mfs1 and mfs2 were selected for study because they were found to be sodium hypochlorite (NaOCl) inducible. Antibiotic susceptibility testing was used to define the importance of these MFS pumps in antibiotic resistance and proteomics was used to characterize the resistance mechanisms involved. The results revealed that mfs1 is NaOCl inducible whereas mfs2 is NaOCl, N-Ethylmaleimide and t-butyl hydroperoxide inducible. Deletion of mfs1 or mfs2 did not affect antibiotic or paraquat susceptibility. However, over-production of Mfs1 and Mfs2 reduced susceptibility to aminoglycosides, quinolones, and paraquat. Proteomics, gene expression analysis and targeted mutagenesis showed that over-production of the MexXY RND-type efflux pump in a manner dependent upon armZ, but not amgRS, is the cause of reduced antibiotic susceptibility upon over-production of Mfs1 and Mfs2. mexXY operon expression analysis in strains carrying various lengths of mfs1 and mfs2 revealed that at least three transmembrane domains are necessary for mexXY over-expression and decreased antibiotic susceptibility. Over-expression of the MFS-type efflux pump gene tetA(C) did not give the same effect. Changes in paraquat susceptibility were independent of mexXY and armZ suggesting that it is a substrate of Mfs1 and Mfs2. Altogether, this is the first evidence of cascade effects where the over-production of an MFS pump causes over-production of an RND pump, in this case MexXY via increased armZ expression.


1999 ◽  
Vol 43 (6) ◽  
pp. 1340-1346 ◽  
Author(s):  
Olga Lomovskaya ◽  
Angela Lee ◽  
Kazuki Hoshino ◽  
Hiroko Ishida ◽  
Anita Mistry ◽  
...  

ABSTRACT Drug efflux pumps in Pseudomonas aeruginosa were evaluated as potential targets for antibacterial therapy. The potential effects of pump inhibition on susceptibility to fluoroquinolone antibiotics were studied with isogenic strains that overexpress or lack individual efflux pumps and that have various combinations of efflux- and target-mediated mutations. Deletions in three efflux pump operons were constructed. As expected, deletion of the MexAB-OprM efflux pump decreased resistance to fluoroquinolones in the wild-type P. aeruginosa (16-fold reduction for levofloxacin [LVX]) or in the strain that overexpressed mexAB-oprM operon (64-fold reduction for LVX). In addition to that, resistance to LVX was significantly reduced even for the strains carrying target mutations (64-fold for strains for which LVX MICs were >4 μg/ml). We also studied the frequencies of emergence of LVX-resistant variants from different deletion mutants and the wild-type strain. Deletion of individual pumps or pairs of the pumps did not significantly affect the frequency of emergence of resistant variants (at 4× the MIC for the wild-type strain) compared to that for the wild type (10−6to 10−7). In the case of the strain with a triple deletion, the frequency of spontaneous mutants was undetectable (<10−11). In summary, inhibition of drug efflux pumps would (i) significantly decrease the level of intrinsic resistance, (ii) reverse acquired resistance, and (iii) result in a decreased frequency of emergence of P. aeruginosa strains highly resistant to fluoroquinolones in clinical settings.


2020 ◽  
Vol 27 (33) ◽  
pp. 5510-5529
Author(s):  
Zengtao Wang ◽  
Qingqing Meng ◽  
Shaoshun Li

Background: Multidrug Resistance (MDR) is defined as a cross-resistance of cancer cells to various chemotherapeutics and has been demonstrated to correlate with drug efflux pumps. Visualization of drug efflux pumps is useful to pre-select patients who may be insensitive to chemotherapy, thus preventing patients from unnecessary treatment. Near-Infrared (NIR) imaging is an attractive approach to monitoring MDR due to its low tissue autofluorescence and deep tissue penetration. Molecular NIR imaging of MDR cancers requires stable probes targeting biomarkers with high specificity and affinity. Objective: This article aims to provide a concise review of novel NIR probes and their applications in MDR cancer treatment. Results: Recently, extensive research has been performed to develop novel NIR probes and several strategies display great promise. These strategies include chemical conjugation between NIR dyes and ligands targeting MDR-associated biomarkers, native NIR dyes with inherent targeting ability, activatable NIR probes as well as NIR dyes loaded nanoparticles. Moreover, NIR probes have been widely employed for photothermal and photodynamic therapy in cancer treatment, which combine with other modalities to overcome MDR. With the rapid advancing of nanotechnology, various nanoparticles are incorporated with NIR dyes to provide multifunctional platforms for controlled drug delivery and combined therapy to combat MDR. The construction of these probes for MDR cancers targeted NIR imaging and phototherapy will be discussed. Multimodal nanoscale platform which integrates MDR monitoring and combined therapy will also be encompassed. Conclusion: We believe these NIR probes project a promising approach for diagnosis and therapy of MDR cancers, thus holding great potential to reach clinical settings in cancer treatment.


2004 ◽  
Vol 40 (14) ◽  
pp. 2064-2070 ◽  
Author(s):  
J. Bart ◽  
H. Hollema ◽  
H.J.M. Groen ◽  
E.G.E. de Vries ◽  
N.H. Hendrikse ◽  
...  

Author(s):  
Viola Camilla Scoffone ◽  
Tom Coenye ◽  
Giovanna Riccardi ◽  
Silvia Buroni

Sign in / Sign up

Export Citation Format

Share Document