Liquid and solids separation for target resource recovery from thermal hydrolyzed sludge

2020 ◽  
Vol 171 ◽  
pp. 115476 ◽  
Author(s):  
Dan Lu ◽  
Dan Wu ◽  
Tingting Qian ◽  
Jiankai Jiang ◽  
Shenbin Cao ◽  
...  
2020 ◽  
pp. 79-82
Author(s):  
G.N. Kravchenko ◽  
K.G. Kravchenko

The effectiveness of multiple hardening by shot peening of samples made of «30ХГСН2А» high-strength steel to increase their fatigue strength is experimentally established. Repeated hardenings allow not only to restore the original durability and even significantly increase it. Keywords fatigue strength, durability, resource recovery, multiple processing by shot peening, repeated hardening, high-strength steel. [email protected]


2015 ◽  
Vol 4 (0) ◽  
pp. 9781780402802-9781780402802 ◽  
Author(s):  
P. Lens ◽  
L. Hulshoff Pol ◽  
P. Wilderer ◽  
T. Asano

1999 ◽  
Vol 39 (9) ◽  
pp. 161-168 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul ◽  
Andrew Drinkwater ◽  
Ian Clifforde

The use of computational fluid dynamics-based techniques for predicting the gross solids and finely suspended solids separation performance of structures within urban drainage systems is becoming well established. This paper compares the result of simulated flow patterns and gross solids separation predictions with field measurements made in a full size storage chamber. The gross solids retention efficiency was measured for six different storage chambers in the field and simulations of these chambers were undertaken using the Fluent computational fluid dynamics software. Differences between the observed and simulated flow patterns are discussed. The simulated flow fields were used to estimate chamber efficiency using particle tracking. Efficiency results are presented as efficiency cusps, with efficiency plotted as a function of settling velocity. The cusp represents a range of efficiency values, and approaches to the estimation of an overall efficiency value from these cusps are briefly discussed. Estimates of total efficiency based on the observed settling velocity distribution differed from the measured values by an average of ±17%. However, estimates of steady flow efficiency were consistently higher than the observed values. The simulated efficiencies agreed with the field observations in identifying the most efficient configuration.


2020 ◽  
Vol 17 (7) ◽  
pp. 768-779
Author(s):  
Natarajan Narayanan ◽  
Vasudevan Mangottiri ◽  
Kiruba Narayanan

Microbial Fuel Cells (MFCs) offer a sustainable solution for alternative energy production by employing microorganisms as catalysts for direct conversion of chemical energy of feedstock into electricity. Electricity from urine (urine-tricity) using MFCs is a promising cost-effective technology capable of serving multipurpose benefits - generation of electricity, waste alleviation, resource recovery and disinfection. As an abundant waste product from human and animal origin with high nutritional values, urine is considered to be a potential source for extraction of alternative energy in the coming days. However, developments to improve power generation from urine-fed MFCs at reasonable scales still face many challenges such as non-availability of sustainable materials, cathodic limitations, and low power density. The aim of this paper was to critically evaluate the state-of-the-art research and developments in urine-fed MFCs over the past decade (2008-2018) in terms of their construction (material selection and configuration), modes of operation (batch, continuous, cascade, etc.) and performance (power generation, nutrient recovery and waste treatment). This review identifies the preference for sources of urine for MFC application from human beings, cows and elephants. Among these, human urine-fed MFCs offer a variety of applications to practice in the real-world scenario. One key observation is that, effective disinfection can be achieved by optimizing the operating conditions and MFC configurations without compromising on performance. In essence, this review demarcates the scope of enhancing the reuse potential of urine for renewable energy generation and simultaneously achieving resource recovery.


Sign in / Sign up

Export Citation Format

Share Document