Impact of a large sub-tropical reservoir on the cycling of nutrients in a river

2020 ◽  
Vol 186 ◽  
pp. 116363
Author(s):  
Fushun Wang
Author(s):  
Deborah Steinberg

The structure of planktonic communities profoundly affects particle export and sequestration of organic material (the biological pump) and the chemical cycling of nutrients. This chapter describes the integral and multifaceted role zooplankton (both protozoan and metazoan) play in the export and cycling of elements in the ocean, with an emphasis on the North Atlantic Ocean and adjacent seas. Zooplankton consume a significant proportion of primary production across the world's oceans, and their metabolism plays a key role in recycling carbon, nitrogen, and other elements. The chapter also addresses how human or climate-influenced changes in North Atlantic zooplankton populations may in turn drive changes in zooplankton-mediated biogeochemical cycling.


2016 ◽  
Vol 227 (3) ◽  
Author(s):  
Frederico Guilherme de Souza Beghelli ◽  
Daniele Frascareli ◽  
Marcelo Luiz Martins Pompêo ◽  
Viviane Moschini-Carlos

Hydrobiologia ◽  
2015 ◽  
Vol 765 (1) ◽  
pp. 265-275 ◽  
Author(s):  
Natália Carneiro Lacerda dos Santos ◽  
Herick Soares de Santana ◽  
Rosa Maria Dias ◽  
Hugo Leandro Ferreira Borges ◽  
Viviane Ferreira de Melo ◽  
...  

2022 ◽  
Vol 27 (1) ◽  
Author(s):  
Takudzwa C. Madzivanzira ◽  
Chipo Mungenge ◽  
Adroit T. Chakandinakira ◽  
Nyasha Rugwete ◽  
Blessing Kavhu

2007 ◽  
Vol 21 (3) ◽  
pp. 641-648 ◽  
Author(s):  
Ariadne do Nascimento Moura ◽  
Maria do Carmo Bittencourt-Oliveira ◽  
Ênio Wocyli Dantas ◽  
João Dias de Toledo Arruda Neto

The aim of this study was to characterize phytoplankton associations, as well as discuss controlling factors determining algal dominance in a eutrophic tropical reservoir, Mundaú, Pernambuco, Brazil. Water samples were collected during the dry period (January/2005) and the rainy period (June/2005). The samples were collected from both limnetic and littoral regions, and the phytoplankton assemblages identified from current literature after preservation in formaldehyde 4%. At the same time as sampling was done, in situ measurements of water temperature, transparency, dissolved oxygen, and pH were also taken. Total phosphorus, total nitrogen concentration and the Trophic State Index were subsequently determined in the laboratory. Phytoplankton density (ind. L-1) was estimated using an inverted Zeiss microscope. Grouping of the phytoplankton associations was carried out using the Reynolds phytosociological classification. During the dry period, reservoir water showed low dissolved oxygen concentrations, alkaline pH and was relatively turbid compared to the situation during the rainy season. Reservoir water is limited by nitrogen during both seasonal periods. The Trophic State Index is classified as determining eutrophic conditions. Phytoplankton was represented by 70 infrageneric taxa grouped in 16 functional associations, with the majority typical of eutrophic systems. This fact is supported by quantitative analysis, which shows the dominance of S associations comprising exclusively R-strategist cyanobacteria.


Sign in / Sign up

Export Citation Format

Share Document