scholarly journals Intermittent Water Supply Impacts on Distribution System Biofilms and Water Quality

2021 ◽  
pp. 117372
Author(s):  
Carolina Calero Preciado ◽  
Stewart Husband ◽  
Joby Boxall ◽  
Gonzalo del Olmo ◽  
Víctor Soria-Carrasco ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 806
Author(s):  
Takuya Sakomoto ◽  
Mahmood Lutaaya ◽  
Edo Abraham

Intermittent water supply networks risk microbial and chemical contamination through multiple mechanisms. In particular, in the cities of developing countries, where intrusion through leaky pipes are more prevalent and the sanitation systems coverage is low, contaminated water can be a public health hazard. Although countries using intermittent water supply systems aim to change to continuous water supply systems—for example, Kampala city is targeting to change to continuous water supply by 2025 through an expansion and rehabilitation of the pipe infrastructure—it is unlikely that this transition will happen soon because of rapid urbanisation and economic feasibility challenges. Therefore, water utilities need to find ways to supply safe drinking water using existing systems until gradually changing to a continuous supply system. This study describes solutions for improving water quality in Mukono town in Uganda through a combination of water quality monitoring (e.g., identifying potential intrusion hotspots into the pipeline using field measurements) and interventions (e.g., booster chlorination). In addition to measuring and analyses of multiple chemical and microbial water quality parameters, we used EPANET 2.0 to simulate the water quality dynamics in the transport pipeline to assess the impact of interventions.


Author(s):  
Marian Kwietniewski ◽  
Katarzyna Miszta-Kruk ◽  
Kaja Niewitecka ◽  
Mirosław Sudoł ◽  
Krzysztof Gaska

The security of water delivery of the required quality by water supply networks is identified with the concept of reliability. Therefore, a method of reliability evaluation of water distribution of the required quality was developed. The method is based on the probabilistic character of secondary water contamination in the water supply network. Data for the method are taken from monitoring of the water distribution system. The method takes into consideration the number and locations of individual measurement points and the results of the tests of water quality indicators at these points. The sets of measurement points and water quality indicators constitute a matrix research (observation) field in the model. The proposed method was implemented to assess the reliability of a water distribution process with respect to water with the required microbiological quality indicators in a real distribution system.


Water SA ◽  
2020 ◽  
Vol 46 (1 January) ◽  
Author(s):  
Carlo Loubser ◽  
Suzanne Esther Basson ◽  
Heinz Erasmus Jacobs

Various challenges, such as limited freshwater resources, climate change impacts, rapid population growth, urbanisation and underinvestment in water supply infrastructure, have led to intermittent water supply (IWS) in potable water distribution systems. Earlier research has confirmed that IWS negatively impacts the consumers, the infrastructure and the water supply authorities.  Water supply authorities need tools to help understand IWS and the associated implications. A new indexing framework involving the causes and impacts associated with IWS is presented in this paper. In addition, a novel approach allows for quantification of the severity of IWS based on knowledge of a few readily available inputs. The severity quantification is based on two ratios: the intermittency ratio is a temporal measurement, accounting for supply duration; the connection ratio describes spatial aspects, using the number of service connections affected. The indexing framework and quantification tool could lead to improved understanding of IWS and could assist water supply authorities faced with IWS to make informed decisions. Improved planning of remedial actions to mitigate or avoid risks associated with IWS is aided. The tools presented in this paper could be used as basis for future development of a key performance indicator.


2013 ◽  
Vol 13 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Y. Arai ◽  
A. Koizumi ◽  
T. Inakazu ◽  
A. Masuko ◽  
S. Tamura

This research is aimed at multiple-objective optimization of water operations in a water supply and distribution system. These objectives include reducing energy use while at the same time meeting water quality needs. The first objective is to propose water operations aimed at minimizing energy consumption. The second is to optimize water supply and distribution from the standpoint of water quality based on total organic carbon and the third is to attempt optimization that satisfies the first two objectives through multipurpose fuzzy linear programming (LP). This study mathematically formulates water operation planning issues focusing on reducing energy consumption and improving water quality in a water distribution system. Estimates show that a reduction in energy use of around 10% can be expected. Fuzzy LP is applied to achieve a balance among multiple objectives. The research demonstrates the effectiveness of the proposed multipurpose optimization when applied to trade-offs in water operation.


2020 ◽  
Author(s):  
Ababu T. Tiruneh ◽  
Tesfamariam Y. Debessai ◽  
Gabriel C. Bwembya ◽  
Stanley J. Nkambule

Abstract. Monitoring of chlorine residual in water distribution systems is necessary not only for ensuring potable water quality but also prevent emergence of disinfection by-products due to excess chlorination. Modelling work for chlorine residual was carried out for water supply distribution network of a town using both second order and first order reaction rate models. For the development of the model, the bulk reaction decay rate was determined in the laboratory using bottle testing while the wall decay rate was determined by calibration of the water quality model using field residual chlorine concentration measurements. The model results show that there is no significant difference in the residual chlorine between the two models or the cost saving that result in terms chlorine usage for the range of initial chlorine dosages anticipated. Constant rate chlorine model is more conservative and offers additional safety in terms of chlorine residual present. Significant differences only occur at excess chlorine residual concentration within the distribution system above the intended maximum residual to be attained. Further research that relates the chlorine dose with the water quality characteristics is necessary to make a more general evaluation.


Sign in / Sign up

Export Citation Format

Share Document