scholarly journals The occurrence of potentially pathogenic fungi and protists in Canadian lakes predicted using geomatics, in situ and satellite-derived variables: towards a tele-epidemiological approach

2021 ◽  
pp. 117935
Author(s):  
Anaïs Oliva ◽  
Rebecca E. Garner ◽  
David Walsh ◽  
Yannick Huot
mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Kyle C. Costa ◽  
Megan Bergkessel ◽  
Scott Saunders ◽  
Jonas Korlach ◽  
Dianne K. Newman

ABSTRACTDiverse bacteria, including severalPseudomonasspecies, produce a class of redox-active metabolites called phenazines that impact different cell types in nature and disease. Phenazines can affect microbial communities in both positive and negative ways, where their presence is correlated with decreased species richness and diversity. However, little is known about how the concentration of phenazines is modulatedin situand what this may mean for the fitness of members of the community. Through culturing of phenazine-degrading mycobacteria, genome sequencing, comparative genomics, and molecular analysis, we identified several conserved genes that are important for the degradation of threePseudomonas-derived phenazines: phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), and pyocyanin (PYO). PCA can be used as the sole carbon source for growth by these organisms. Deletion of several genes inMycobacterium fortuitumabolishes the degradation phenotype, and expression of two genes in a heterologous host confers the ability to degrade PCN and PYO. In cocultures with phenazine producers, phenazine degraders alter the abundance of different phenazine types. Not only does degradation support mycobacterial catabolism, but also it provides protection to bacteria that would otherwise be inhibited by the toxicity of PYO. Collectively, these results serve as a reminder that microbial metabolites can be actively modified and degraded and that these turnover processes must be considered when the fate and impact of such compounds in any environment are being assessed.IMPORTANCEPhenazine production byPseudomonasspp. can shape microbial communities in a variety of environments ranging from the cystic fibrosis lung to the rhizosphere of dryland crops. For example, in the rhizosphere, phenazines can protect plants from infection by pathogenic fungi. The redox activity of phenazines underpins their antibiotic activity, as well as providing pseudomonads with important physiological benefits. Our discovery that soil mycobacteria can catabolize phenazines and thereby protect other organisms against phenazine toxicity suggests that phenazine degradation may influence turnoverin situ. The identification of genes involved in the degradation of phenazines opens the door to monitoring turnover in diverse environments, an essential process to consider when one is attempting to understand or control communities influenced by phenazines.


2020 ◽  
Vol 32 (12) ◽  
pp. 3151-3156

A novel series of nano-sized zinc(II) complexes of type [{Zn(M)(H2O)2}(CH3COO–)2] (where M = macrocyclic ligands) has been synthesized by the in situ reactions of Schiff bases derived from 3-(phenyl/substituted phenyl)-4-amino-5-hydrazino-1,2,4-triazoles, salicyldehyde/2-hydroxy-1- naphthaldehyde and 1,4-dibromobutane/1,5-dibromopentane in presence of zinc(II) acetate dihydrate in absolute ethanol. The structures of all these zinc(II) complexes were established on the basis of elemental analyses and spectral data (IR, 1H NMR and 13C NMR). Scanning electron microscopy studies have been carried out to investigate the particle size and surface morphology of a particular complex while thermal studies confirm the presence of coordinated water molecules in all the zinc(II) complexes. The antimicrobial effects of all the synthesized complexes were studied against different species of pathogenic fungi and bacteria.


2007 ◽  
Vol 20 (12) ◽  
pp. 1495-1504 ◽  
Author(s):  
Hamid S. Garmaroodi ◽  
Masatoki Taga

A supernumerary chromosome called a conditionally dispensable chromosome (CDC) is essential for pathogenicity of Nectria haematococca on pea. Among several CDCs discovered in N. haematococca, the PDA1 CDC that harbors the pisatin demethylation gene PDA1 is one of the best-studied CDCs and serves as a model for plant-pathogenic fungi. Although the presence of multiple copies is usual for supernumerary chromosomes in other eukaryotes, this possibility has not been examined well for any CDCs in N. haematococca. In this study, we produced strains with multiple copies of the PDA1 CDC by protoplast fusion and analyzed dosage effects of this chromosome. Using multiple methods, including cytological chromosome counting and fluorescence in situ hybridization, the fusion products between two transformants derived from the same strain that bears a single PDA1 CDC were shown to contain two PDA1 CDCs from both transformants and estimated to be haploid resulting from the deletion of an extra set or sets of A chromosomes in the fused nuclei. In phenotype assays, dosage effects of PDA1 CDC in the fusion products were evident as increased virulence and homoserine-utilizing ability compared with the parents. In a separate fusion experiment, PDA1 CDC accumulated up to four copies in a haploid genome.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 399 ◽  
Author(s):  
Carlos David Grande Tovar ◽  
Johannes Delgado-Ospina ◽  
Diana Paola Navia Porras ◽  
Yeimmy Peralta-Ruiz ◽  
Alexander Pérez Cordero ◽  
...  

Guava is a fruit appreciated worldwide for its high content of bioactive compounds. However, it is considered a highly perishable fruit, generally attacked by pathogenic species such as the fungi Colletotrichum gloeosporioides, which causes anthracnosis. To diminish the losses caused by pathogenic fungi, coatings of chitosan (CS) with Ruta graveolens essential oil (RGEO) in different concentrations (0.5, 1.0, 1.5% v/v) were applied in situ and their effects on the physical properties and microbiological quality of the guavas were studied. The CS+RGEO coated fruits exhibited better physicochemical behavior and lower microbiological decay as compared to the uncoated guavas, demonstrating the effectiveness of the coatings, especially those with 1.5% of RGEO content. All the fruits coated had greater acceptance and quality than the controls, being more those with essential oil incorporation. In situ investigation of C. gloesporioides infection of guavas demonstrated that the CS+RGEO coated guavas showed a high percentage of inhibition in the development of anthracnose lesions. In the present investigation, an alternative method has been proposed to extend the stability of the guavas fruit up to 12 days with application in the food industry.


Author(s):  
Svetlana Zivkovic ◽  
Stefan Stosic ◽  
Danijela Ristic ◽  
Ivan Vucurovic ◽  
Milos Stevanovic

Lactobacillus plantarum, one of the most widespread lactic acid bacte?ria, exert a strong antagonistic activity against many microorganisms. The present study was conducted to determine in vitro and in situ antagonistic potential of L. plantarum (DSM 20174) for control postharvest decay caused by phytopathogenic fungi: Aspergillus flavus, Colletotrichum acutatum, Colletotrichum gloeosporioides, and Fusarium avenaceum. The results obtained in in vitro assays showed that L. plantarum had a stronger inhibitory effect on spore germination than on mycelia growth of all tested fungi. After 3 days of incubation, the diameter of inhibition zones ranged from 11.67 mm for C. gloeosporioides to 14.67 mm for C. acutatum. The bacterial suspension of L. plantarum significantly inhibited conidial germination of all postharvest pathogens (89.62-97.61%). In situ assays showed that treatment with L. plantarum efficiently inhibited necrosis ranging from 42.54% for C. acutatum to 54.47% for A. flavus. The disease incidence in L. plantarum treated fruits was statistically significantly lower than in the positive control for all fungi tested (P<0.05). The presented data demonstrate the antagonistic potential of L. plantarum (DSM 20174) and indicate the possibility of using this bacterial strain as a biological agent to control postharvest fungal pathogens.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document