phenazine production
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 10)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Douglas J. Fraser-Pitt ◽  
Stephen K. Dolan ◽  
David Toledo-Aparicio ◽  
Jessica G. Hunt ◽  
Daniel W. Smith ◽  
...  

Pseudomonas aeruginosa is a major opportunistic human pathogen which employs a myriad of virulence factors. In people with cystic fibrosis (CF) P. aeruginosa frequently colonises the lungs and becomes a chronic infection that evolves to become less virulent over time, but often adapts to favour persistence in the host with alginate-producing mucoid, slow-growing, and antibiotic resistant phenotypes emerging. Cysteamine is an endogenous aminothiol which has been shown to prevent biofilm formation, reduce phenazine production, and potentiate antibiotic activity against P. aeruginosa, and has been investigated in clinical trials as an adjunct therapy for pulmonary exacerbations of CF. Here we demonstrate (for the first time in a prokaryote) that cysteamine prevents glycine utilisation by P. aeruginosa in common with previously reported activity blocking the glycine cleavage system in human cells. Despite the clear inhibition of glycine metabolism, cysteamine also inhibits hydrogen cyanide (HCN) production by P. aeruginosa, suggesting a direct interference in the regulation of virulence factor synthesis. Cysteamine impaired chemotaxis, lowered pyocyanin, pyoverdine and exopolysaccharide production, and reduced the toxicity of P. aeruginosa secreted factors in a Galleria mellonella infection model. Thus, cysteamine has additional potent anti-virulence properties targeting P. aeruginosa, further supporting its therapeutic potential in CF and other infections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaiquan Liu ◽  
Ling Li ◽  
Wentao Yao ◽  
Wei Wang ◽  
Yujie Huang ◽  
...  

AbstractTrans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) is a cyclic β-amino acid used for the synthesis of non-natural peptides and chiral materials. And it is an intermediate product of phenazine production in Pseudomonas spp. Lzh-T5 is a P. chlororaphis strain isolated from tomato rhizosphere found in China. It can synthesize three antifungal phenazine compounds. Disruption the phzF gene of P. chlororaphis Lzh-T5 results in DHHA accumulation. Several strategies were used to improve production of DHHA: enhancing the shikimate pathway by overexpression, knocking out negative regulatory genes, and adding metal ions to the medium. In this study, three regulatory genes (psrA, pykF, and rpeA) were disrupted in the genome of P. chlororaphis Lzh-T5, yielding 5.52 g/L of DHHA. When six key genes selected from the shikimate, pentose phosphate, and gluconeogenesis pathways were overexpressed, the yield of DHHA increased to 7.89 g/L. Lastly, a different concentration of Fe3+ was added to the medium for DHHA fermentation. This genetically engineered strain increased the DHHA production to 10.45 g/L. According to our result, P. chlororaphis Lzh-T5 could be modified as a microbial factory to produce DHHA. This study laid a good foundation for the future industrial production and application of DHHA.


Metabolites ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 417
Author(s):  
Tobias Depke ◽  
Susanne Häussler ◽  
Mark Brönstrup

Pseudomonas aeruginosa is one of the most important nosocomial pathogens and understanding its virulence is the key to effective control of P. aeruginosa infections. The regulatory network governing virulence factor production in P. aeruginosa is exceptionally complex. Previous studies have shown that the peptide chain release factor methyltransferase PrmC plays an important role in bacterial pathogenicity. Yet, the underlying molecular mechanism is incompletely understood. In this study, we used untargeted liquid and gas chromatography coupled to mass spectrometry to characterise the metabolome of a prmC defective P. aeruginosa PA14 strain in comparison with the corresponding strain complemented with prmC in trans. The comprehensive metabolomics data provided new insight into the influence of prmC on virulence and metabolism. prmC deficiency had broad effects on the endo- and exometabolome of P. aeruginosa PA14, with a marked decrease of the levels of aromatic compounds accompanied by reduced precursor supply from the shikimate pathway. Furthermore, a pronounced decrease of phenazine production was observed as well as lower abundance of alkylquinolones. Unexpectedly, the metabolomics data showed no prmC-dependent effect on rhamnolipid production and an increase in pyochelin levels. A putative virulence biomarker identified in a previous study was significantly less abundant in the prmC deficient strain.


2020 ◽  
Author(s):  
Gabriele Sass ◽  
Hasan Nazik ◽  
Paulami Chatterjee ◽  
David A Stevens

Abstract Airways of immunocompromised patients, or individuals with cystic fibrosis (CF), are common ground for Pseudomonas aeruginosa and Aspergillus fumigatus infections. Hence, in such a microenvironment both pathogens compete for resources. While under limiting iron conditions the siderophore pyoverdine is the most effective antifungal P. aeruginosa product, we now provide evidence that under nonlimiting iron conditions P. aeruginosa supernatants lack pyoverdine but still possess considerable antifungal activity. Spectrometric analyses of P. aeruginosa supernatants revealed the presence of phenazines, such as pyocyanin, only under nonlimiting iron conditions. Supernatants of quorum sensing mutants of strain PA14, defective in phenazine production, as well as supernatants of the P. aeruginosa strain PAO1, lacked pyocyanin, and were less inhibitory toward A. fumigatus biofilms under nonlimiting iron conditions. When blood as a natural source of iron was present during P. aeruginosa supernatant production, pyoverdine was absent, and phenazines, including pyocyanin, appeared, resulting in an antifungal effect on A. fumigatus biofilms. Pure pyocyanin reduced A. fumigatus biofilm metabolism. In summary, P. aeruginosa has mechanisms to compete with A. fumigatus under limiting and non-limiting iron conditions, and can switch from iron-denial-based to toxin-based antifungal activity. This has implications for the evolution of the microbiome in clinical settings where the two pathogens co-exist. Important differences in the iron response of P. aeruginosa laboratory strains PA14 and PAO1 were also uncovered. Lay Summary P. aeruginosa (Pa) and A. fumigatus (Af) form biofilms in lungs of persons with cystic fibrosis and interact via virulence factors. Pa inhibits Af via different factors, depending on the availability of iron from blood. Low iron favors the use of pyoverdine, high iron the use of the toxin pyocyanin.


2020 ◽  
Author(s):  
Ling Li ◽  
Zhenghua Li ◽  
Xuehong Zhang ◽  
Wei Wang ◽  
Yujie Huang ◽  
...  

Abstract Background: Trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) is a cyclic β-amino acid used for the synthesis of non-natural peptides and chiral materials. It is an intermediate product of phenazine production in Pseudomonas spp . Lzh-T5 is a P. chlororaphis strain isolated from tomato rhizosphere found in China. It can synthesize three antifungal phenazine compounds. Results: Disrupting the phzF gene of P. chlororaphis Lzh-T5 results in DHHA accumulation. Several strategies were used to improve production of DHHA: enhancing the shikimate pathway by overexpression, knocking out negative regulatory genes, and adding metal ions to the medium. In this study, three regulatory genes ( psrA , pykF, and rpeA ) were-disrupted in the genome of P. chlororaphis Lzh-T5, yielding 4.55 g/L of DHHA. When six key genes selected from the shikimate, pentose phosphate, and gluconeogenesis pathways were overexpressed, the yield of DHHA increased to 6.89g/L. Fe 3+ was added to the medium for DHHA fermentation. This genetically engineered strain increased the DHHA production to 10.45g/L. Conclusions: P. chlororaphis Lzh-T5 could be modified as a microbial factory to produce DHHA by inactivating phzF , disrupting negative regulatory genes, overexpressing key genes, and adding metal ions to medium for fermentation.


2020 ◽  
Vol 8 (2) ◽  
pp. 243 ◽  
Author(s):  
Aida Meto ◽  
Bruna Colombari ◽  
Agron Meto ◽  
Giorgia Boaretto ◽  
Diego Pinetti ◽  
...  

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen responsible for a wide range of clinical conditions, from mild infections to life-threatening nosocomial biofilm-associated diseases, which are particularly severe in susceptible individuals. The aim of this in vitro study was to assess the effects of an Albanian propolis on several virulence-related factors of P. aeruginosa, such as growth ability, biofilm formation, extracellular DNA (eDNA) release and phenazine production. To this end, propolis was processed using three different solvents and the extracted polyphenolic compounds were identified by means of high performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis. As assessed by a bioluminescence-based assay, among the three propolis extracts, the ethanol (EtOH) extract was the most effective in inhibiting both microbial growth and biofilm formation, followed by propylene glycol (PG) and polyethylene glycol 400 (PEG 400) propolis extracts. Furthermore, Pseudomonas exposure to propolis EtOH extract caused a decrease in eDNA release and phenazine production. Finally, caffeic acid phenethyl ester (CAPE) and quercetin decreased upon propolis EtOH extract exposure to bacteria. Overall, our data add new insights on the anti-microbial properties of a natural compound, such as propolis against P. aeruginosa. The potential implications of these findings will be discussed.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Konstanze T. Schiessl ◽  
Fanghao Hu ◽  
Jeanyoung Jo ◽  
Sakila Z. Nazia ◽  
Bryan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document