A modified approach to wavemaker modeling for high-order spectral numerical wave tanks

Wave Motion ◽  
2021 ◽  
pp. 102850
Author(s):  
Jiawang Liu ◽  
Bin Teng
Keyword(s):  
2012 ◽  
Vol 34 ◽  
pp. 19-34 ◽  
Author(s):  
Guillaume Ducrozet ◽  
Félicien Bonnefoy ◽  
David Le Touzé ◽  
Pierre Ferrant

2016 ◽  
Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind A. Arnsten

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events can become critical from design perspective. In a numerical wave tank, extreme waves can be generated through focussed waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a pre-selected location and time. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface shows good agreement with the measurements from experiments. In further computations, the wave impact of the focussed waves on a vertical circular cylinder is investigated. The focussed wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave-structure interaction problems in particular and for free surface flows in general. The open-source CFD code REEF3D solves the three-dimensional Navier-Stokes equations on a staggered Cartesian grid. Solid boundaries are taken into account with the ghost cell immersed boundary method. For the discretization of the convection terms of the momentum equations, the conservative finite difference version of the fifth-order WENO (weighted essentially non-oscillatory) scheme is used. For temporal treatment, the third-order TVD (total variation diminishing) Runge-Kutta scheme is employed. For the pressure, the projection method is used. The free surface flow is solved as two-phase fluid system. For the interface capturing, the level set method is selected. The level set function can be discretized with high-order differencing schemes. This makes it the appropriate solution for wave propagation problems based on Navier-Stokes solvers, which requires high-order numerical methods to avoid artificial wave damping. The numerical model is fully parallelized based on the domain decomposition, using MPI (message passing interface) for internode communication.


Author(s):  
Y. Ishida ◽  
H. Ishida ◽  
K. Kohra ◽  
H. Ichinose

IntroductionA simple and accurate technique to determine the Burgers vector of a dislocation has become feasible with the advent of HVEM. The conventional image vanishing technique(1) using Bragg conditions with the diffraction vector perpendicular to the Burgers vector suffers from various drawbacks; The dislocation image appears even when the g.b = 0 criterion is satisfied, if the edge component of the dislocation is large. On the other hand, the image disappears for certain high order diffractions even when g.b ≠ 0. Furthermore, the determination of the magnitude of the Burgers vector is not easy with the criterion. Recent image simulation technique is free from the ambiguities but require too many parameters for the computation. The weak-beam “fringe counting” technique investigated in the present study is immune from the problems. Even the magnitude of the Burgers vector is determined from the number of the terminating thickness fringes at the exit of the dislocation in wedge shaped foil surfaces.


Author(s):  
C. M. Sung ◽  
D. B. Williams

Researchers have tended to use high symmetry zone axes (e.g. <111> <114>) for High Order Laue Zone (HOLZ) line analysis since Jones et al reported the origin of HOLZ lines and described some of their applications. But it is not always easy to find HOLZ lines from a specific high symmetry zone axis during microscope operation, especially from second phases on a scale of tens of nanometers. Therefore it would be very convenient if we can use HOLZ lines from low symmetry zone axes and simulate these patterns in order to measure lattice parameter changes through HOLZ line shifts. HOLZ patterns of high index low symmetry zone axes are shown in Fig. 1, which were obtained from pure Al at -186°C using a double tilt cooling holder. Their corresponding simulated HOLZ line patterns are shown along with ten other low symmetry orientations in Fig. 2. The simulations were based upon kinematical diffraction conditions.


Author(s):  
J. M. Zuo ◽  
A. L. Weickenmeier ◽  
R. Holmestad ◽  
J. C. H. Spence

The application of high order reflections in a weak diffraction condition off the zone axis center, including those in high order laue zones (HOLZ), holds great promise for structure determination using convergent beam electron diffraction (CBED). It is believed that in this case the intensities of high order reflections are kinematic or two-beam like. Hence, the measured intensity can be related to the structure factor amplitude. Then the standard procedure of structure determination in crystallography may be used for solving unknown structures. The dynamic effect on HOLZ line position and intensity in a strongly diffracting zone axis is well known. In a weak diffraction condition, the HOLZ line position may be approximated by the kinematic position, however, it is not clear whether this is also true for HOLZ intensities. The HOLZ lines, as they appear in CBED patterns, do show strong intensity variations along the line especially near the crossing of two lines, rather than constant intensity along the Bragg condition as predicted by kinematic or two beam theory.


2003 ◽  
Vol 50 (3-4) ◽  
pp. 375-386
Author(s):  
D. B. MilosÕeviĆ ◽  
W. Becker

Sign in / Sign up

Export Citation Format

Share Document