Numerical study on the erosion process of the low temperature economizer using computational fluid dynamics-discrete particle method

Wear ◽  
2020 ◽  
Vol 450-451 ◽  
pp. 203269 ◽  
Author(s):  
Hao Zhang ◽  
Gong Li ◽  
Xizhong An ◽  
Xinglian Ye ◽  
Guangchao Wei ◽  
...  
2016 ◽  
Vol 155 ◽  
pp. 314-337 ◽  
Author(s):  
Liqiang Lu ◽  
Ji Xu ◽  
Wei Ge ◽  
Guoxian Gao ◽  
Yong Jiang ◽  
...  

2016 ◽  
Vol 826 ◽  
pp. 99-104
Author(s):  
Guang Rui Jiang ◽  
Li Bin Liu ◽  
Huang Xiang Teng ◽  
Fang Qing Kong

s In this study, Computational Fluid Dynamics (CFD) was used to simulate the flow and temperature distribution in zinc pot of hot-dip galvanizing process. The flow and temperature distribution in a base-case zinc pot was compared to that in other two optimized zinc pots, one of which had a dam between ingot and snout and another one had a reduced heating power. The simulation shows that the dam impedes the flow of low temperature liquid zinc around zinc ingot to strip and increases the fluctuation of zinc level. By reducing the heating power, however, the fluctuation of zinc level could be suppressed.


2020 ◽  
Vol 25 ◽  
pp. 114-132 ◽  
Author(s):  
V.A. Agra Brandão ◽  
R. Araújo de Queiroz ◽  
R. Lima Dantas ◽  
G. Santos de Lima ◽  
N. Lima Tresena ◽  
...  

Freezing is one the most efficient methods for conservation, especially, fruits and vegetables. Cashew is a fruit with high nutritional value and great economic importance in the Northeast region of Brazil, however, due to high moisture content, it is highly perishable. The numerical study of the freezing process is of great importance for the optimization of the process. In this sense, the objective of this work was to study the cooling and freezing processes of cashew apple using computational fluid dynamics technique. Experiments of cooling and freezing of the fruit, with the aid of a refrigerator,data acquisition system and thermocouples, and simulation using Ansys CFX® software for obtain the cooling and freezing kinetics of the product were realized. Results of the cooling and freezing kinetics of the cashew apple and temperature distribution inside the cashew apple are presented, compared and analyzed. The model was able to predict temperaturetransient behavior with good accuracy, except in the post-freezing period.


Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 118839
Author(s):  
Shiliang Yang ◽  
Ruihan Dong ◽  
Yanxiang Du ◽  
Shuai Wang ◽  
Hua Wang

Author(s):  
Utku Gülan ◽  
Diego Gallo ◽  
Raffaele Ponzini ◽  
Beat Lüthi ◽  
Markus Holzner ◽  
...  

The complex hemodynamics observed in the human aorta make this district a site of election for an in depth investigation of the relationship between fluid structures, transport and pathophysiology. In recent years, the coupling of imaging techniques and computational fluid dynamics (CFD) has been applied to study aortic hemodynamics, because of the possibility to obtain highly resolved blood flow patterns in more and more realistic and fully personalized flow simulations [1]. However, the combination of imaging techniques and computational methods requires some assumptions that might influence the predicted hemodynamic scenario. Thus, computational modeling requires experimental cross-validation. Recently, 4D phase contrast MRI (PCMRI) has been applied in vivo and in vitro to access the velocity field in aorta [2] and to validate numerical results [3]. However, PCMRI usually requires long acquisition times and suffers from low spatial and temporal resolution and a low signal-to-noise ratio. Anemometric techniques have been also applied for in vitro characterization of the fluid dynamics in aortic phantoms. Among them, 3D Particle Tracking Velocimetry (PTV), an optical technique based on imaging of flow tracers successfully used to obtain Lagrangian velocity fields in a wide range of complex and turbulent flows [4], has been very recently applied to characterize fluid structures in the ascending aorta [5].


Sign in / Sign up

Export Citation Format

Share Document