scholarly journals Coolant boiling and cavitation wear – a new tool wear mechanism on WC tools in machining Alloy 718 with high-pressure coolant

Wear ◽  
2020 ◽  
Vol 452-453 ◽  
pp. 203284 ◽  
Author(s):  
Nageswaran Tamil Alagan ◽  
Philipp Hoier ◽  
Tomas Beno ◽  
Uta Klement ◽  
Anders Wretland
2016 ◽  
Vol 826 ◽  
pp. 93-98 ◽  
Author(s):  
Pravin Pawar ◽  
Sandip Patil ◽  
Swapnil Kekade ◽  
Swapnil Pawar ◽  
Rajkumar Singh

Titanium alloys are referred to difficult-to-cut materials because of its some inferior properties like low thermal conductivity and high chemical reactivity. To improve machinability of these alloys one way is to use cutting fluids which removes the heat generated at the chip tool interface during the machining process. But coolant with low pressure and improper delivery is not able to break the vapor barrier created by high cutting temperature. The present work investigates the effect of using high pressure coolant system (50 Bar) on machinability of Ti6Al4V. The machinability was measured in terms of tool wear. The dominant tool wear mechanism was investigated by using scanning electron microscopy and energy dispersive X-ray analysis of worn out cutting tool surfaces. Abrasion wear on flank face and crater wear on the rake face was observed as a dominant tool wear mechanism. Along with this diffusion of titanium from the work surface to tool face is also confirmed.


Wear ◽  
2019 ◽  
Vol 434-435 ◽  
pp. 102922 ◽  
Author(s):  
Nageswaran Tamil Alagan ◽  
Philipp Hoier ◽  
Pavel Zeman ◽  
Uta Klement ◽  
Tomas Beno ◽  
...  

2013 ◽  
Vol 554-557 ◽  
pp. 1961-1966 ◽  
Author(s):  
Yessine Ayed ◽  
Guenael Germain ◽  
Amine Ammar ◽  
Benoit Furet

Titanium alloys are known for their excellent mechanical properties, especially at high temperature. But this specificity of titanium alloys can cause high cutting forces as well as a significant release of heat that may entail a rapid wear of the cutting tool. To cope with these problems, research has been taken in several directions. One of these is the development of assistances for machining. In this study, we investigate the high pressure coolant assisted machining of titanium alloy Ti17. High pressure coolant consists of projecting a jet of water between the rake face of the tool and the chip. The efficiency of the process depends on the choice of the operating parameters of machining and the parameters of the water jet such as its pressure and its diameter. The use of this type of assistance improves chip breaking and increases tool life. Indeed, the machining of titanium alloys is generally accompanied by rapid wear of cutting tools, especially in rough machining. The work done focuses on the wear of uncoated tungsten carbide tools during machining of Ti17. Rough and finish machining in conventional and in high pressure coolant assistance conditions were tested. Different techniques were used in order to explain the mechanisms of wear. These tests are accompanied by measurement of cutting forces, surface roughness and tool wear. The Energy-dispersive X-ray spectroscopy (EDS) analysis technique made it possible to draw the distribution maps of alloying elements on the tool rake face. An area of material deposition on the rake face, characterized by a high concentration of titanium, was noticed. The width of this area and the concentration of titanium decreases in proportion with the increasing pressure of the coolant. The study showed that the wear mechanisms with and without high pressure coolant assistance are different. In fact, in the condition of conventional machining, temperature in the cutting zone becomes very high and, with lack of lubrication, the cutting edge deforms plastically and eventually collapses quickly. By contrast, in high pressure coolant assisted machining, this problem disappears and flank wear (VB) is stabilized at high pressure. The sudden rupture of the cutting edge observed under these conditions is due to the propagation of a notch and to the crater wear that appears at high pressure. Moreover, in rough condition, high pressure assistance made it possible to increase tool life by up to 400%.


Author(s):  
Aruna Prabha Kolluri ◽  
Srinivasa Prasad Balla ◽  
Satya Prasad Paruchuru

Abstract The 3D Finite element method (FEM) is an efficient tool to predict the variables in the cutting process, which is otherwise challenging to obtain with the experimental methods alone. The present study combines both experimental findings and finite element simulation outcomes to investigate the effect of tool material on output process variables, such as vibrations, cutting temperature distribution and tool wear mechanism. Machining of popular aerospace materials like Ti-6Al-4V and Al7075 turned with coated and uncoated tools are part of the investigation. The authors choose the orthogonal test, measured vibrations and cutting temperatures and used FE simulations to carry out the subsequent validations. This study includes the influence of the predicted heat flux and temperature distribution on the tool wear mechanism. The main aim of this study is to investigate the performance quality of uncoated and coated carbide tools along with its thermal aspects. Comparison of experiment and simulation outcomes shows good agreement with a maximum error of 9.02%. It has been noted that the increase of cutting temperature is proportional to its cutting speed. As the cutting speed increases, it is observed that vibration parameter and flank wear value also increases. Overall, coated carbide turning insert tool is the best method for metal turning with higher rotational speeds of the spindle.


2006 ◽  
Vol 315-316 ◽  
pp. 536-540 ◽  
Author(s):  
Ming Zhou ◽  
X.D. Liu ◽  
S.N. Huang

The development of the capability to machine glass materials to optical quality is highly desirable. In this work, the deformation characteristics of brittle materials were analyzed by micro and nano indentations. Diamond cutting of optical glass BK7 was performed in order to investigate the tool wear mechanism in machining of brittle materials and the effect of tool vibration on material removal mechanism. The tool wear mechanism was discussed on the basis of the observation of wear zone. Ductile-mode cutting has easily been achieved with the application of ultrasonic vibration during cutting of glass. It was confirmed experimentally that the tool wear and surface finish were improved significantly by applying ultrasonic vibration to the cutting tool.


Sign in / Sign up

Export Citation Format

Share Document