N1-P2 Recordings to Gaps in Broadband Noise

2013 ◽  
Vol 24 (01) ◽  
pp. 037-045 ◽  
Author(s):  
Shannon B. Palmer ◽  
Frank E. Musiek

Background: Normal temporal processing is important for the perception of speech in quiet and in difficult listening situations. Temporal resolution is commonly measured using a behavioral gap detection task, where the patient or subject must participate in the evaluation process. This is difficult to achieve with subjects who cannot reliably complete a behavioral test. However, recent research has investigated the use of evoked potential measures to evaluate gap detection. Purpose: The purpose of the current study was to record N1-P2 responses to gaps in broadband noise in normal hearing young adults. Comparisons were made of the N1 and P2 latencies, amplitudes, and morphology to different length gaps in noise in an effort to quantify the changing responses of the brain to these stimuli. It was the goal of this study to show that electrophysiological recordings can be used to evaluate temporal resolution and measure the influence of short and long gaps on the N1-P2 waveform. Research Design: This study used a repeated-measures design. All subjects completed a behavioral gap detection procedure to establish their behavioral gap detection threshold (BGDT). N1-P2 waveforms were recorded to the gap in a broadband noise. Gap durations were 20 msec, 2 msec above their BGDT, and 2 msec. These durations were chosen to represent a suprathreshold gap, a near-threshold gap, and a subthreshold gap. Study Sample: Fifteen normal-hearing young adult females were evaluated. Subjects were recruited from the local university community. Data Collection and Analysis: Latencies and amplitudes for N1 and P2 were compared across gap durations for all subjects using a repeated-measures analysis of variance. A qualitative description of responses was also included. Results: Most subjects did not display an N1-P2 response to a 2 msec gap, but all subjects had present clear evoked potential responses to 20 msec and 2+ msec gaps. Decreasing gap duration toward threshold resulted in decreasing waveform amplitude. However, N1 and P2 latencies remained stable as gap duration changed. Conclusions: N1-P2 waveforms can be elicited by gaps in noise in young normal-hearing adults. The responses are present as low as 2 msec above behavioral gap detection thresholds (BGDT). Gaps that are below BGDT do not generally evoke an electrophysiological response. These findings indicate that when a waveform is present, the gap duration is likely above their BGDT. Waveform amplitude is also a good index of gap detection, since amplitude decreases with decreasing gap duration. Future studies in this area will focus on various age groups and individuals with auditory disorders.

2001 ◽  
Vol 44 (4) ◽  
pp. 737-750 ◽  
Author(s):  
Lynne A. Werner ◽  
Richard C. Folsom ◽  
Lisa R. Mancl ◽  
Connie L. Syapin

Gap detection is a commonly used measure of temporal resolution, although the mechanisms underlying gap detection are not well understood. To the extent that gap detection depends on processes within, or peripheral to, the auditory brainstem, one would predict that a measure of gap threshold based on the auditory brainstem response (ABR) would be similar to the psychophysical gap detection threshold. Three experiments were performed to examine the relationship between ABR gap threshold and gap detection. Thresholds for gaps in a broadband noise were measured in young adults with normal hearing, using both psychophysical techniques and electrophysiological techniques that use the ABR. The mean gap thresholds obtained with the two methods were very similar, although ABR gap thresholds tended to be lower than psychophysical gap thresholds. There was a modest correlation between psychophysical and ABR gap thresholds across participants. ABR and psychophysical thresholds for noise masked by temporally continuous, high-pass, or spectrally notched noise were measured in adults with normal hearing. Restricting the frequency range with masking led to poorer gap thresholds on both measures. High-pass maskers affected the ABR and psychophysical gap thresholds similarly. Notched-noise-masked ABR and psychophysical gap thresholds were very similar except that low-frequency, notched-noise-masked ABR gap threshold was much poorer at low levels. The ABR gap threshold was more sensitive to changes in signal-to-masker ratio than was the psychophysical gap detection threshold. ABR and psychophysical thresholds for gaps in broadband noise were measured in listeners with sensorineural hearing loss and in infants. On average, both ABR gap thresholds and psychophysical gap detection thresholds of listeners with hearing loss were worse than those of listeners with normal hearing, although individual differences were observed. Psychophysical gap detection thresholds of 3- and 6-month-old infants were an order of magnitude worse than those of adults with normal hearing, as previously reported; however, ABR gap thresholds of 3-month-old infants were no different from those of adults with normal hearing. These results suggest that ABR gap thresholds and psychophysical gap detection depend on at least some of the same mechanisms within the auditory system.


2008 ◽  
Vol 19 (06) ◽  
pp. 496-506 ◽  
Author(s):  
Richard H. Wilson ◽  
Rachel McArdle ◽  
Heidi Roberts

Background: So that portions of the classic Miller, Heise, and Lichten (1951) study could be replicated, new recorded versions of the words and digits were made because none of the three common monosyllabic word lists (PAL PB-50, CID W-22, and NU–6) contained the 9 monosyllabic digits (1–10, excluding 7) that were used by Miller et al. It is well established that different psychometric characteristics have been observed for different lists and even for the same materials spoken by different speakers. The decision was made to record four lists of each of the three monosyllabic word sets, the monosyllabic digits not included in the three sets of word lists, and the CID W-1 spondaic words. A professional female speaker with a General American dialect recorded the materials during four recording sessions within a 2-week interval. The recording order of the 582 words was random. Purpose: To determine—on listeners with normal hearing—the psychometric properties of the five speech materials presented in speech-spectrum noise. Research Design: A quasi-experimental, repeated-measures design was used. Study Sample: Twenty-four young adult listeners (M = 23 years) with normal pure-tone thresholds (≤20-dB HL at 250 to 8000 Hz) participated. The participants were university students who were unfamiliar with the test materials. Data Collection and Analysis: The 582 words were presented at four signal-to-noise ratios (SNRs; −7-, −2-, 3-, and 8-dB) in speech-spectrum noise fixed at 72-dB SPL. Although the main metric of interest was the 50% point on the function for each word established with the Spearman-Kärber equation (Finney, 1952), the percentage correct on each word at each SNR was evaluated. The psychometric characteristics of the PB-50, CID W-22, and NU–6 monosyllabic word lists were compared with one another, with the CID W-1 spondaic words, and with the 9 monosyllabic digits. Results: Recognition performance on the four lists within each of the three monosyllabic word materials were equivalent, ±0.4 dB. Likewise, word-recognition performance on the PB-50, W-22, and NU–6 word lists were equivalent, ±0.2 dB. The mean recognition performance at the 50% point with the 36 W-1 spondaic words was ˜6.2 dB lower than the 50% point with the monosyllabic words. Recognition performance on the monosyllabic digits was 1–2 dB better than mean performance on the monosyllabic words. Conclusions: Word-recognition performances on the three sets of materials (PB-50, CID W-22, and NU–6) were equivalent, as were the performances on the four lists that make up each of the three materials. Phonetic/phonemic balance does not appear to be an important consideration in the compilation of word-recognition lists used to evaluate the ability of listeners to understand speech.A companion paper examines the acoustic, phonetic/phonological, and lexical variables that may predict the relative ease or difficulty for which these monosyllable words were recognized in noise (McArdle and Wilson, this issue).


2008 ◽  
Vol 19 (06) ◽  
pp. 481-495 ◽  
Author(s):  
Jeffrey Weihing ◽  
Frank E. Musiek

Background: A common complaint of patients with (central) auditory processing disorder is difficulty understanding speech in noise. Because binaural hearing improves speech understanding in compromised listening situations, quantifying this ability in different levels of noise may yield a measure with high clinical utility. Purpose: To examine binaural enhancement (BE) and binaural interaction (BI) in different levels of noise for the auditory brainstem response (ABR) and middle latency response (MLR) in a normal hearing population. Research Design: An experimental study in which subjects were exposed to a repeated measures design. Study Sample: Fifteen normal hearing female adults served as subjects. Normal hearing was assessed by pure-tone audiometry and otoacoustic emissions. Intervention: All subjects were exposed to 0, 20, and 35 dB effective masking (EM) of white noise during monotic and diotic click stimulation. Data Collection and Analysis: ABR and MLR responses were simultaneously acquired. Peak amplitudes and latencies were recorded and compared across conditions using a repeated measures analysis of variance (ANOVA). Results: For BE, ABR results showed enhancement at 0 and 20 dB EM, but not at 35 dB EM. The MLR showed BE at all noise levels, but the degree of BE decreased with increasing noise level. For BI, both the ABR and MLR showed BI at all noise levels. However, the degree of BI again decreased with increasing noise level for the MLR. Conclusions: The results demonstrate the ability to measure BE simultaneously in the ABR and MLR in up to 20 dB of EM noise and BI in up to 35 dB EM of noise. Results also suggest that ABR neural generators may respond to noise differently than MLR generators.


2017 ◽  
Vol 35 (3) ◽  
pp. 217-231 ◽  
Author(s):  
Dae Shik Kim ◽  
Robert Wall Emerson ◽  
Koorosh Naghshineh

A repeated-measures design with block randomization was used for the study, in which 15 adults with visual impairments attempted to detect the drop-offs and obstacles with the canes of different lengths, swinging the cane in different widths (narrow vs wide). Participants detected the drop-offs significantly more reliably with the standard-length cane (79.5% ± 6.5% of the time) than with the extended-length cane (67.6% ± 9.1%), p < .001. The drop-off detection threshold of the standard-length cane (4.1 ± 1.1 cm) was also significantly smaller than that of the extended-length cane (6.5 ± 1.8 cm), p < .001. In addition, participants detected drop-offs at a significantly higher percentage when they swung the cane approximately 3 cm beyond the widest part of the body (78.6% ± 7.6%) than when they swung it substantially wider (30 cm; 68.5% ± 8.3%), p < .001. In contrast, neither cane length ( p = .074) nor cane swing arc width ( p = .185) had a significant effect on obstacle detection performance. The findings of the study may help orientation and mobility specialists recommend appropriate cane length and cane swing arc width to visually impaired cane users.


2015 ◽  
Vol 24 (2) ◽  
pp. 216-225
Author(s):  
Ramya Vaidyanath ◽  
Asha Yathiraj

Purpose Gap-detection thresholds have been reported to vary depending on the type of stimuli used. The current study compared the performance of older adults on 2 tests of temporal resolution, one with random gaps and the other with gaps in the center of a noise signal. The study also determined which of the 2 tests was able to detect more temporal resolution deficits in older individuals. Method Two tests of temporal resolution, the Gap Detection Test (GDT; Shivaprakash, 2003) and the Gaps-In-Noise test (GIN; Musiek et al., 2005), were administered to 31 older adults with near normal hearing, aged 55 to 70 years. The order in which the tests were administered was randomized. Results The gap-detection thresholds obtained using GIN were significantly higher than those obtained using GDT. The difference in thresholds was ascribed to the randomness with which gaps were interspersed within noise segments in the 2 tests. More individuals failed on GIN than GDT. The older adults with high-frequency hearing loss obtained poorer gap thresholds than those with normal hearing. Conclusion The results indicated that older individuals failed GIN more often compared to GDT. This was attributed to the differences in stimuli and procedure used in the 2 tests.


2012 ◽  
Vol 23 (07) ◽  
pp. 501-509 ◽  
Author(s):  
Erin C. Schafer ◽  
Jody Pogue ◽  
Tyler Milrany

Background: Speech recognition abilities of adults and children using cochlear implants (CIs) are significantly degraded in the presence of background noise, making this an important area of study and assessment by CI manufacturers, researchers, and audiologists. However, at this time there are a limited number of fixed-intensity sentence recognition tests available that also have multiple, equally intelligible lists in noise. One measure of speech recognition, the AzBio Sentence Test, provides 10-talker babble on the commercially available compact disc; however, there is no published evidence to support equivalency of the 15-sentence lists in noise for listeners with normal hearing (NH) or CIs. Furthermore, there is limited or no published data on the reliability, validity, and normative data for this test in noise for listeners with CIs or NH. Purpose: The primary goals of this study were to examine the equivalency of the AzBio Sentence Test lists at two signal-to-noise ratios (SNRs) in participants with NH and at one SNR for participants with CIs. Analyses were also conducted to establish the reliability, validity, and preliminary normative data for the AzBio Sentence Test for listeners with NH and CIs. Research Design: A cross-sectional, repeated measures design was used to assess speech recognition in noise for participants with NH or CIs. Study Sample: The sample included 14 adults with NH and 12 adults or adolescents with Cochlear Freedom CI sound processors. Participants were recruited from the University of North Texas clinic population or from local CI centers. Data Collection and Analysis: Speech recognition was assessed using the 15 lists of the AzBio Sentence Test and the 10-talker babble. With the intensity of the sentences fixed at 73 dB SPL, listeners with NH were tested at 0 and −3 dB SNRs, and participants with CIs were tested at a +10 dB SNR. Repeated measures analysis of variance (ANOVA) was used to analyze the data. Results: The primary analyses revealed significant differences in performance across the 15 lists on the AzBio Sentence Test for listeners with NH and CIs. However, a follow-up analysis revealed no significant differences in performance across 10 of the 15 lists. Using the 10, equally-intelligible lists, a comparison of speech recognition performance across the two groups suggested similar performance between NH participants at a −3 dB SNR and the CI users at a +10 SNR. Several additional analyses were conducted to support the reliability and validity of the 10 equally intelligible AzBio sentence lists in noise, and preliminary normative data were provided. Conclusions: Ten lists of the commercial version of the AzBio Sentence Test may be used as a reliable and valid measure of speech recognition in noise in listeners with NH or CIs. The equivalent lists may be used for a variety of purposes including audiological evaluations, determination of CI candidacy, hearing aid and CI programming considerations, research, and recommendations for hearing assistive technology. In addition, the preliminary normative data provided in this study establishes a starting point for the creation of comprehensive normative data for the AzBio Sentence Test.


2004 ◽  
Vol 47 (5) ◽  
pp. 965-978 ◽  
Author(s):  
Richard A. Roberts ◽  
Jennifer J. Lister

Older listeners with normal-hearing sensitivity and impaired-hearing sensitivity often demonstrate poorer-than-normal performance on tasks of speech understanding in noise and reverberation. Deficits in temporal resolution and in the precedence effect may underlie this difficulty. Temporal resolution is often studied by means of a gap-detection paradigm. This task is similar to binaural fusion paradigms used to measure the precedence effect. The purpose of this investigation was to determine if within-channel (measured with monotic and diotic gap detection) or across-channel (measured with dichotic gap detection) temporal resolution is related to fusion (measured with lag-burst thresholds; LBTs) under dichotic, anechoic, and reverberant conditions. Gap-detection thresholds (GDTs) and LBTs were measured by means of noise-burst stimuli for 3 groups of listeners: young adults with normal-hearing sensitivity (YNH), older adults with normal-hearing sensitivity (ONH), and older adults with impaired-hearing sensitivity (OIH). The GDTs indicated that across-channel temporal resolution is poorer than within-channel temporal resolution and that the effects of age and hearing loss are dependent on condition. Results for the fusion task indicated higher LBTs in reverberation than for the dichotic and anechoic conditions, regardless of group, and no effect of age or hearing loss for the nonreverberant conditions. However, higher LBTs were observed in the reverberant condition for the ONH listeners. Further, there was a correlation between across-channel temporal resolution and fusion in reverberation. Gap detection and fusion may not necessarily reflect the same underlying processes; however, across-channel gap detection may influence fusion under certain conditions (i.e., in reverberation).


2012 ◽  
Vol 23 (02) ◽  
pp. 092-096 ◽  
Author(s):  
Richard H. Wilson ◽  
Kelly L. Watts

Background: The Words-in-Noise Test (WIN) was developed as an instrument to quantify the ability of listeners to understand monosyllabic words in background noise using multitalker babble (Wilson, 2003). The 50% point, which is calculated with the Spearman-Kärber equation (Finney, 1952), is used as the evaluative metric with the WIN materials. Initially, the WIN was designed as a 70-word instrument that presented ten unique words at each of seven signal-to-noise ratios from 24 to 0 dB in 4 dB decrements. Subsequently, the 70-word list was parsed into two 35-word lists that achieved equivalent recognition performances (Wilson and Burks, 2005). This report involves the development of a third list (WIN List 3) that was developed to serve as a practice list to familiarize the participant with listening to words presented in background babble. Purpose: To determine—on young listeners with normal hearing and on older listeners with sensorineural hearing loss—the psychometric properties of the WIN List 3 materials. Research Design: A quasi-experimental, repeated-measures design was used. Study Sample: Twenty-four young adult listeners (M = 21.6 yr) with normal pure-tone thresholds (≤20 dB HL at 250 to 8000 Hz) and 24 older listeners (M = 65.9 yr) with sensorineural hearing loss participated. Data Collection and Analysis: The level of the babble was fixed at 80 dB SPL with the level of the words varied from 104 to 80 dB SPL in 4 dB decrements. Results: For listeners with normal hearing, the 50% points for Lists 1 and 2 were similar (4.3 and 5.1 dB S/N, respectively), both of which were lower than the 50% point for List 3 (7.4 dB S/N). A similar relation was observed with the listeners with hearing loss, 50% points for Lists 1 and 2 of 12.2 and 12.4 dB S/N, respectively, compared to 15.8 dB S/N for List 3. The differences between Lists 1 and 2 and List 3 were significant. The relations among the psychometric functions and the relations among the individual data both reflected these differences. Conclusions: The significant ˜3 dB difference between performances on WIN Lists 1 and 2 and on WIN List 3 by the listeners with normal hearing and the listeners with hearing loss dictates caution with the use of List 3. The use of WIN List 3 should be reserved for ancillary purposes in which equivalent recognition performances are not required, for example, as a practice list or a stand alone measure.


2017 ◽  
Vol 28 (05) ◽  
pp. 373-384
Author(s):  
Kathy R. Vander Werff ◽  
Kerrie L. Nesbitt

Background: Recent behavioral studies have suggested that individuals with sloping audiograms exhibit localized improvements in frequency discrimination in the frequency region near the drop in hearing. Auditory-evoked potentials may provide evidence of such cortical plasticity and reorganization of frequency maps. Purpose: The objective of this study was to evaluate electrophysiological evidence of cortical plasticity related to cortical frequency representation and discrimination abilities in older individuals with high-frequency sensorineural hearing loss (SNHL). It was hypothesized that the P3 response in this group would show evidence of physiological reorganization of frequency maps and enhanced neural representation at the edge of their high-frequency loss due to their restricted SNHL. Research Design: The P3 auditory event-related potential in response to small frequency changes was recorded in a repeated measures design using an oddball paradigm that presented upward and downward frequency changes of 2%, 5%, and 20% to three groups of listeners. Study Sample: P3 recordings from a group of seven older individuals with a restricted sloping hearing loss >1000 or 2000 Hz was compared to two control groups of younger (n = 7) and older (n = 7) individuals with normal hearing/borderline normal hearing through 4000 Hz. Data Collection and Analysis: The auditory P3 was recorded using an oddball paradigm (80%/20%) with the standard tone at the highest frequency of normal hearing in the hearing-impaired participants, also known as the edge frequency (EF). EFs were either 1000 or 2000 Hz for all participants. The target tones represented upward and downward frequency changes of 2%, 5%, and 20% from the standard tones of either 1000 or 2000 Hz. Waveforms were recorded using a two-channel clinical-evoked potential system. Latency and amplitude of the P300 peak were analyzed across groups for the three frequency conditions using repeated measures analysis of variance. Results: The results of this study suggest that the P3 response can be elicited by frequency changes as small as 2–5%. P3 responses at the EF of hearing loss were present and larger in amplitude for more participants with a sloping hearing loss compared to age-matched normal-hearing peers tested at the same frequencies. As a result, the older participants with sloping hearing losses had P3 responses more similar to the younger normal-hearing participants than their age-matched peers with normal hearing. Conclusions: These preliminary results partially support the idea of enhanced cortical representation of frequency at the EF of localized SNHL in older adults that is not purely due to age.


Sign in / Sign up

Export Citation Format

Share Document