scholarly journals Combining low-density cell culture, single-cell tracking, and patch-clamp to monitor the behavior of postnatal murine cerebellar neural stem cells

2021 ◽  
Vol 2 (4) ◽  
pp. 100964
Author(s):  
Aida Menéndez-Méndez ◽  
Lucía Paniagua-Herranz ◽  
Luis A. Olivos-Oré ◽  
Rosa Gómez-Villafuertes ◽  
Raquel Pérez-Sen ◽  
...  
Methods ◽  
2018 ◽  
Vol 133 ◽  
pp. 81-90 ◽  
Author(s):  
Katja M. Piltti ◽  
Brian J. Cummings ◽  
Krystal Carta ◽  
Ayla Manughian-Peter ◽  
Colleen L. Worne ◽  
...  

2011 ◽  
Vol 6 (12) ◽  
pp. 1847-1859 ◽  
Author(s):  
Felipe Ortega ◽  
Marcos R Costa ◽  
Tatiana Simon-Ebert ◽  
Timm Schroeder ◽  
Magdalena Götz ◽  
...  

2016 ◽  
Vol 7 ◽  
pp. 926-936 ◽  
Author(s):  
Igor M Pongrac ◽  
Marina Dobrivojević ◽  
Lada Brkić Ahmed ◽  
Michal Babič ◽  
Miroslav Šlouf ◽  
...  

Background: Cell tracking is a powerful tool to understand cellular migration, dynamics, homing and function of stem cell transplants. Nanoparticles represent possible stem cell tracers, but they differ in cellular uptake and side effects. Their properties can be modified by coating with different biocompatible polymers. To test if a coating polymer, poly(L-lysine), can improve the biocompatibility of nanoparticles applied to neural stem cells, poly(L-lysine)-coated maghemite nanoparticles were prepared and characterized. We evaluated their cellular uptake, the mechanism of internalization, cytotoxicity, viability and proliferation of neural stem cells, and compared them to the commercially available dextran-coated nanomag®-D-spio nanoparticles. Results: Light microscopy of Prussian blue staining revealed a concentration-dependent intracellular uptake of iron oxide in neural stem cells. The methyl thiazolyl tetrazolium assay and the calcein acetoxymethyl ester/propidium iodide assay demonstrated that poly(L-lysine)-coated maghemite nanoparticles scored better than nanomag®-D-spio in cell labeling efficiency, viability and proliferation of neural stem cells. Cytochalasine D blocked the cellular uptake of nanoparticles indicating an actin-dependent process, such as macropinocytosis, to be the internalization mechanism for both nanoparticle types. Finally, immunocytochemistry analysis of neural stem cells after treatment with poly(L-lysine)-coated maghemite and nanomag®-D-spio nanoparticles showed that they preserve their identity as neural stem cells and their potential to differentiate into all three major neural cell types (neurons, astrocytes and oligodendrocytes). Conclusion: Improved biocompatibility and efficient cell labeling makes poly(L-lysine)-coated maghemite nanoparticles appropriate candidates for future neural stem cell in vivo tracking studies.


Cell ◽  
2015 ◽  
Vol 161 (5) ◽  
pp. 1175-1186 ◽  
Author(s):  
Yuping Luo ◽  
Volkan Coskun ◽  
Aibing Liang ◽  
Juehua Yu ◽  
Liming Cheng ◽  
...  

2020 ◽  
Author(s):  
Manuel Göpferich ◽  
Nikhil Oommen George ◽  
Ana Domingo Muelas ◽  
Alex Bizyn ◽  
Rosa Pascual ◽  
...  

SUMMARYAutism spectrum disorder (ASD) is a neurodevelopmental disease affecting social behavior. Many of the high-confident ASD risk genes relate to mRNA translation. Specifically, many of these genes are involved in regulation of gene expression for subcellular compartmentalization of proteins1. Cis-regulatory motifs that often localize to 3’- and 5’-untranslated regions (UTRs) offer an additional path for posttranscriptional control of gene expression. Alternative cleavage and polyadenylation (APA) affect 3’UTR length thereby influencing the presence or absence of regulatory elements. However, APA has not yet been addressed in the context of neurodevelopmental disorders. Here we used single cell 3’end sequencing to examine changes in 3’UTRs along the differentiation from neural stem cells (NSCs) to neuroblasts within the adult brain. We identified many APA events in genes involved in neurodevelopment, many of them being high confidence ASD risk genes. Further, analysis of 3’UTR lengths in single cells from ASD and healthy individuals detected longer 3’UTRs in ASD patients. Motif analysis of modulated 3’UTRs in the mouse adult neurogenic lineage and ASD-patients revealed enrichment of the cytoplasmic and polyadenylation element (CPE). This motif is bound by CPE binding protein 4 (CPEB4). In human and mouse data sets we observed co-regulation of CPEB4 and the CPEB-binding synaptic adhesion molecule amyloid beta precursor-like protein 1 (APLP1). We show that mice deficient in APLP1 show aberrant regulation of APA, decreased number of neural stem cells, and autistic-like traits. Our findings indicate that APA is used for control of gene expression along neuronal differentiation and is altered in ASD patients.


2012 ◽  
Vol 40 (2) ◽  
pp. 119-130.e9 ◽  
Author(s):  
Nico Scherf ◽  
Katja Franke ◽  
Ingmar Glauche ◽  
Ina Kurth ◽  
Martin Bornhäuser ◽  
...  

2010 ◽  
Vol 65 (2) ◽  
pp. 564-574 ◽  
Author(s):  
Stacey Cromer Berman ◽  
Chulani Galpoththawela ◽  
Assaf A. Gilad ◽  
Jeff W. M. Bulte ◽  
Piotr Walczak

2016 ◽  
Vol 11 (8) ◽  
pp. 1360-1370 ◽  
Author(s):  
Joana S Barbosa ◽  
Rossella Di Giaimo ◽  
Magdalena Götz ◽  
Jovica Ninkovic

Sign in / Sign up

Export Citation Format

Share Document