scholarly journals Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal

2004 ◽  
Vol 275 (2) ◽  
pp. 375-388 ◽  
Author(s):  
Hugo C. Olguin ◽  
Bradley B. Olwin
2018 ◽  
Vol 9 (9) ◽  
Author(s):  
Parto Toofan ◽  
Caroline Busch ◽  
Heather Morrison ◽  
Stephen O’Brien ◽  
Heather Jørgensen ◽  
...  

2021 ◽  
Author(s):  
Diego Sainz de la Maza ◽  
Silvana Hof-Michel ◽  
Lee Phillimore ◽  
Christian Bökel ◽  
Marc Amoyel

AbstractStem cells maintain tissue homeostasis by proliferating to replace cells lost to damage or natural turnover. Whereas stem and progenitor cells proliferate, fully differentiated cells exit the cell cycle. How cell identity and cell cycle state are coordinated during this process is still poorly understood. The Drosophila testis niche supports germline stem cells and somatic cyst stem cells (CySCs), which are the only proliferating somatic cells in the testis. CySCs give rise to post-mitotic cyst cells and therefore provide a tractable model to ask how stem cell identity is linked to proliferation. We show that the G1/S cyclin, Cyclin E, is required for CySC self-renewal; however, its canonical transcriptional regulator, a complex of the E2f1 and Dp transcription factors is dispensable for self-renewal and cell cycle progression. Nevertheless, we demonstrate that E2f1/Dp activity must be silenced to allow CySCs to differentiate. We show that E2f1/Dp activity inhibits the expression of genes important for mitochondrial activity. Furthermore, promoting mitochondrial activity or biogenesis is sufficient to rescue the differentiation of CySCs with ectopic E2f1/Dp activity but not their exit from the cell cycle. Our findings together indicate that E2f1/Dp coordinates cell cycle progression with stem cell identity by regulating the metabolic state of CySCs.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 76-76 ◽  
Author(s):  
Kuanyin Karen Lin ◽  
Lara Rossi ◽  
Margaret A. Goodell

Abstract Hematopoietic stem cells (HSCs) comprise only ~0.02% of the whole bone marrow cells but possess the capacity to extensively proliferate in order to restore hematopoietic homeostasis. Under homeostasis, HSCs are relatively quiescent with a slow cell cycle progression rate. However, upon stimulation, HSCs are able to promptly proliferate and undergo self-renewal to regenerate HSCs as daughter cells. While regulatory mechanisms involved in cell cycle progression are well characterized to be essential for HSC self-renewal, the mechanisms that facilitate the return of proliferating HSC to their quiescent state have been largely overlooked. The expression of CD81 (also called TAPA-1), a transmembrane protein that belongs to the Tetraspanin family, has been found associated with HSC proliferation. While CD81 is normally absent on HSC, it becomes markedly upregulated during HSC proliferation (Figure 1). To understand the function of CD81 in regenerating HSCs, we utilized a murine stem cell retroviral vector to deliver genes into 5-FU treated bone marrow progenitors to test the effect of enforced CD81 overexpression on HSC. The CD81-transduced proliferating progenitors were found to give rise to an increased number of phenotypically-defined HSC (SP-KLS) without significantly affecting the homeostasis in peripheral organs. In addition, we also characterized the HSCs from CD81 knock-out mice. We discovered that CD81-null HSC failed to engraft in peripheral blood of secondary recipients in serial transplantation assays (Figure 2), suggesting a role of CD81 in preserving a functional HSC compartment during proliferation-induced stress. When investigating further, we discovered that CD81 is a cell cycle suppressor for HSC, as the CD81KO HSCs are delayed in returning quiescence. In addition, clustering of CD81 on the HSC cell membrane using a monoclonal antibody rapidly induced a quiescent phenotype. This was found to be associated with an altered phosphorylation level of AKT, an inhibitor of the transcription factor FOXO1a and FOXO3a, which have been reported to be essential for HSC self-renewal through suppressing HSC proliferation. Taken together, these results demonstrate an essential role of CD81 in HSC self-renewal, and a novel mechanism that advances quiescence from a proliferating state. Figure 1. CD81 expression is upregulated at the time when HSCs (SPKLS) are proliferating in response to 5FU stimulation, a chemotheraputic agent that induces HSC to proliferate. The expression of CD81 is found at a background level in quiescent stages (5FU-Day0 and 5FU-Day11), and is upregulated during proliferation stages (starting 5FU-Day2) Figure 1. CD81 expression is upregulated at the time when HSCs (SPKLS) are proliferating in response to 5FU stimulation, a chemotheraputic agent that induces HSC to proliferate. The expression of CD81 is found at a background level in quiescent stages (5FU-Day0 and 5FU-Day11), and is upregulated during proliferation stages (starting 5FU-Day2) Figure 2. CD8KO HSCs fail to engraft in the secondary competitive transplantation assay, indicating a self-renewal defect. In this assay, 300 donor-derived HSCs (CD45.2 SPKLS) were purified from the primary recipients and transplanted along with 2×105 competitors into lethally irradiated mice (**p<0.01). Figure 2. CD8KO HSCs fail to engraft in the secondary competitive transplantation assay, indicating a self-renewal defect. In this assay, 300 donor-derived HSCs (CD45.2 SPKLS) were purified from the primary recipients and transplanted along with 2×105 competitors into lethally irradiated mice (**p<0.01).


PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e42350 ◽  
Author(s):  
Ming Zhan ◽  
Daniel R. Riordon ◽  
Bin Yan ◽  
Yelena S. Tarasova ◽  
Sarah Bruweleit ◽  
...  

2015 ◽  
Vol 43 (4) ◽  
pp. 309-318.e2 ◽  
Author(s):  
Yingchi Zhang ◽  
Luyun Peng ◽  
Tianyuan Hu ◽  
Yang Wan ◽  
Yuanyuan Ren ◽  
...  

2018 ◽  
Vol 96 (suppl_1) ◽  
pp. 76-77
Author(s):  
M Gonzalez ◽  
A M Brandt ◽  
S E Johnson

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2205
Author(s):  
Anita Florkowska ◽  
Igor Meszka ◽  
Joanna Nowacka ◽  
Monika Granica ◽  
Zuzanna Jablonska ◽  
...  

PAX7 transcription factor plays a crucial role in embryonic myogenesis and in adult muscles in which it secures proper function of satellite cells, including regulation of their self renewal. PAX7 downregulation is necessary for the myogenic differentiation of satellite cells induced after muscle damage, what is prerequisite step for regeneration. Using differentiating pluripotent stem cells we documented that the absence of functional PAX7 facilitates proliferation. Such action is executed by the modulation of the expression of two proteins involved in the DNA methylation, i.e., Dnmt3b and Apobec2. Increase in Dnmt3b expression led to the downregulation of the CDK inhibitors and facilitated cell cycle progression. Changes in Apobec2 expression, on the other hand, differently impacted proliferation/differentiation balance, depending on the experimental model used.


2013 ◽  
Vol 382 (2) ◽  
pp. 504-516 ◽  
Author(s):  
Mathieu Fortier ◽  
Nicolas Figeac ◽  
Robert B. White ◽  
Paul Knopp ◽  
Peter S. Zammit

ASN NEURO ◽  
2015 ◽  
Vol 7 (3) ◽  
pp. 175909141557802 ◽  
Author(s):  
Hongxin Chen ◽  
Matthew T Goodus ◽  
Sonia M de Toledo ◽  
Edouard I Azzam ◽  
Steven W Levison ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document