scholarly journals Genetic dissection of trophic interactions in the larval optic neuropil of Drosophila melanogaster

2005 ◽  
Vol 286 (2) ◽  
pp. 549-558 ◽  
Author(s):  
Verónica G. Rodriguez Moncalvo ◽  
Ana Regina Campos
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaochan Xu ◽  
Wei Yang ◽  
Binghui Tian ◽  
Xiuwen Sui ◽  
Weilai Chi ◽  
...  

AbstractThe fruit fly, Drosophila melanogaster, has been used as a model organism for the molecular and genetic dissection of sleeping behaviors. However, most previous studies were based on qualitative or semi-quantitative characterizations. Here we quantified sleep in flies. We set up an assay to continuously track the activity of flies using infrared camera, which monitored the movement of tens of flies simultaneously with high spatial and temporal resolution. We obtained accurate statistics regarding the rest and sleep patterns of single flies. Analysis of our data has revealed a general pattern of rest and sleep: the rest statistics obeyed a power law distribution and the sleep statistics obeyed an exponential distribution. Thus, a resting fly would start to move again with a probability that decreased with the time it has rested, whereas a sleeping fly would wake up with a probability independent of how long it had slept. Resting transits to sleeping at time scales of minutes. Our method allows quantitative investigations of resting and sleeping behaviors and our results provide insights for mechanisms of falling into and waking up from sleep.


Genetics ◽  
1980 ◽  
Vol 95 (1) ◽  
pp. 95-110 ◽  
Author(s):  
Arthur J Hilliker ◽  
Stephen H Clark ◽  
Arthur Chovnick ◽  
William M Gelbart

ABSTRACT This report describes the genetic analysis of a region of the third chromosome of Drosophila melanogaster extending from 87D2-4 to 87E12-F1, an interval of 23 or 24 polytene chromosome bands. This region includes the rosy (ry, 3-52.0) locus, carrying the structural information for xanthine dehydrogenase (XDH). We have, in recent years, focused attention on the genetic regulation of the rosy locus and, therefore, wished to ascertain in detail the immediate genetic environmcnt of this locus. Specifically, we question if rosy is a solitary genetic unit or part of a larger complex genetic unit encompassing adjacent genes. Our data also provide opportunity to examine further the relationship between euchromatic gene distrihution and polytene chromosome structure.—The results of our genetic dissection of the rosy microregion substantiate the conclusion drawn earlier (SCHALET, KERNAGHAN and CHOVNICK 1964) that the rosy locus is the only gene in this region concerned with XDH activity and that all adjacent genetic units are functionally, as well as spatially, distinct Erom the rosy gene. Within the rosy micro-region, we observed a close correspondence between the number of complementation groups (21) and the number of polytene chromosome bands (23 or 24). Consideration of this latter observation in conjunction with those of similar studies of other chhromosomal regions supports the hypothesis that each polytene chromosome band corresponds to a single genetic unit.


Genetics ◽  
1976 ◽  
Vol 83 (4) ◽  
pp. 765-782
Author(s):  
Arthur J Hilliker

ABSTRACT Until recently, little was known of the genetic constitution of the heterochromatic segments of the major autosomes of Drosophila melanogaster. Our previous report described the genetic dissection of the proximal, heterochromatic region of chromosome 2 of Drosophila melanogasterby means of a series of overlapping deficiencies generated by the detachment of compound second autosomes (Hilliker and Holm 1975). Analysis of these deficiencies by inter se complementation, pseudo-dominance tests with proximal mutations and allelism tests with known deficiencies provided evidence for the existence of at least two loci between the centromere and the light locus in 2L and one locus in 2R between the rolled locus and the centromere. These data in conjunction with cytological observations demonstrated that light and rolled and three loci lying between them are located within the proximal heterochromatin of the second chromosome.——The present report describes the further analysis of this region through the induction with ethyl methanesulphonate (EMS) of recessive lethals allelic to the 2L and 2R proximal deficiencies associated with the detachment products. Analysis of the 118 EMS-induced recessive lethals and visible mutations recovered provided evidence for seven loci in the 2L heterochromatin and six loci in the 2R heterochromatin, with multiple alleles being obtained for most sites. Of these loci, one in 2L and two in 2R fall near the heterochromatic-euchromatic junctions of 2L and 2R respectively. None of the 113 EMS lethals behaved as a deficiency, implying that the heterochromatic loci uncovered in this study represent nonrepetitive cistrons. Thus functional genetic loci are found in heterochromatin, albeit at a very low density relative to euchromatin.


PLoS Genetics ◽  
2018 ◽  
Vol 14 (6) ◽  
pp. e1007434 ◽  
Author(s):  
Noriyuki Ojima ◽  
Yusuke Hara ◽  
Hiroki Ito ◽  
Daisuke Yamamoto

1990 ◽  
Vol 55 (0) ◽  
pp. 203-211 ◽  
Author(s):  
T. Tully ◽  
S. Boynton ◽  
C. Brandes ◽  
J.M. Dura ◽  
R. Mihalek ◽  
...  

1999 ◽  
Vol 74 (2) ◽  
pp. 121-128 ◽  
Author(s):  
J. ROBBINS ◽  
R. AGGARWAL ◽  
R. NICHOLS ◽  
G. GIBSON

Heart rate in pre-pupae of Drosophila melanogaster is shown to vary over a wide range from 2·5 to 3·7 beats per second. Quantitative genetic analysis of a sample of 11 highly inbred lines indicates that approaching one-quarter of the total variance in natural populations can be attributed to genetic differences between flies. A hypomorphic allele of the potassium channel gene ether-a-gogo, which is homologous to a human long-QT syndrome susceptibility gene (HERG), has a heart rate at the low end of the wild-type range, but this effect can be suppressed in certain wild-type genetic backgrounds. This study provides a baseline for investigation of pharmacological and other physiological influences on heart rate in the model organism, and implies that quantitative genetic dissection will provide insight into the molecular basis for variation in normal and arrhythmic heart function.


Genome ◽  
1999 ◽  
Vol 42 (6) ◽  
pp. 1183-1193 ◽  
Author(s):  
Vett K Lloyd ◽  
D A Sinclair ◽  
R Wennberg ◽  
T S Warner ◽  
B M Honda ◽  
...  

The garnet gene was one of the first genes to be identified in Drosophila melanogaster. Mutations in the garnet gene affect both of the biochemically distinct types of pigments in the eye and disrupt pigmentation of other organs. As an initial step in the analysis of this gene, we have analyzed the pigmentation defects in several of the garnet alleles. We have also cloned the gene and examined its expression in various tissues and at different stages of development. The garnet gene is expressed throughout development and in all tissues examined. Structurally related sequences can be detected in a variety of other eukaryotes. The predicted protein sequence of the garnet product resembles clathrin and nonclathrin adaptin proteins and is highly similar to the delta subunit of the newly isolated mammalian AP-3 adaptin complex, which is associated with the trans-Golgi network and endosomes. This suggests that garnet encodes a protein that acts in the intracellular sorting and trafficking of vesicles from the trans-Golgi network to endosomes, and related specialized organelles such as the pigment granule. This finding provides an explanation for the phenotype of garnet mutations and predicts that other Drosophila eye-colour genes will be a rich resource for the genetic dissection of intracellular vesicle transport.Key words: garnet, Drosophila melanogaster, AP-3, eye pigments.


Sign in / Sign up

Export Citation Format

Share Document