scholarly journals The C. elegans RUNX transcription factor RNT-1/MAB-2 is required for asymmetrical cell division of the T blast cell

2005 ◽  
Vol 287 (2) ◽  
pp. 262-273 ◽  
Author(s):  
Hiroshi Kagoshima ◽  
Hitoshi Sawa ◽  
Shohei Mitani ◽  
Thomas R. Bürglin ◽  
Katsuya Shigesada ◽  
...  
Development ◽  
2002 ◽  
Vol 129 (7) ◽  
pp. 1763-1774 ◽  
Author(s):  
Scott Cameron ◽  
Scott G. Clark ◽  
Joan B. McDermott ◽  
Eric Aamodt ◽  
H. Robert Horvitz

During Caenorhabditis elegans development, the patterns of cell divisions, cell fates and programmed cell deaths are reproducible from animal to animal. In a search for mutants with abnormal patterns of programmed cell deaths in the ventral nerve cord, we identified mutations in the gene pag-3, which encodes a zinc-finger transcription factor similar to the mammalian Gfi-1 and Drosophila Senseless proteins. In pag-3 mutants, specific neuroblasts express the pattern of divisions normally associated with their mother cells, producing with each reiteration an abnormal anterior daughter neuroblast and an extra posterior daughter cell that either terminally differentiates or undergoes programmed cell death, which accounts for the extra cell corpses seen in pag-3 mutants. In addition, some neurons do not adopt their normal fates in pag-3 mutants. The phenotype of pag-3 mutants and the expression pattern of the PAG-3 protein suggest that in some lineages pag-3 couples the determination of neuroblast cell fate to subsequent neuronal differentiation. We propose that pag-3 counterparts in other organisms determine blast cell identity and for this reason may lead to cell lineage defects and cell proliferation when mutated.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1623-1628
Author(s):  
Hediye Nese Cinar ◽  
Keri L Richards ◽  
Kavita S Oommen ◽  
Anna P Newman

Abstract We isolated egl-13 mutants in which the cells of the Caenorhabditis elegans uterus initially appeared to develop normally but then underwent an extra round of cell division. The data suggest that egl-13 is required for maintenance of the cell fate.


Genetics ◽  
2021 ◽  
Author(s):  
Anjali Sandhu ◽  
Divakar Badal ◽  
Riya Sheokand ◽  
Shalini Tyagi ◽  
Varsha Singh

Abstract Collagen enriched cuticle forms the outermost layer of skin in nematode Caenorhabditis elegans. The nematode’s genome encodes 177 collagens, but little is known about their role in maintaining the structure or barrier function of the cuticle. In this study, we found six permeability determining (PD) collagens. Loss of any of these PD collagens- DPY-2, DPY-3, DPY-7, DPY-8, DPY-9, and DPY-10- led to enhanced susceptibility of nematodes to paraquat (PQ) and antihelminthic drugs levamisole and ivermectin. Upon exposure to paraquat, PD collagen mutants accumulated more PQ and incurred more damage and death despite the robust activation of antioxidant machinery. We find that BLMP-1, a zinc finger transcription factor, maintains the barrier function of the cuticle by regulating the expression of PD collagens. We show that the permeability barrier maintained by PD collagens acts in parallel to FOXO transcription factor DAF-16 to enhance survival of insulin-like receptor mutant, daf-2. In all, this study shows that PD collagens regulate cuticle permeability by maintaining the structure of C. elegans cuticle and thus provide protection against exogenous toxins.


Cell Cycle ◽  
2009 ◽  
Vol 8 (24) ◽  
pp. 4147-4154 ◽  
Author(s):  
Ryusuke Niwa ◽  
Kazumasa Hada ◽  
Kouichi Moliyama ◽  
Ryosuke L. Ohniwa ◽  
Yi-Meng Tan ◽  
...  

2021 ◽  
Author(s):  
Martin A. Mecchia ◽  
Mariano García-Hourquet ◽  
Fidel Lozano-Elena ◽  
Ainoa Planas-Riverola ◽  
David Blasco-Escamez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document