scholarly journals Cell proliferation drives neural crest cell invasion of the intestine

2007 ◽  
Vol 302 (2) ◽  
pp. 553-568 ◽  
Author(s):  
Matthew J. Simpson ◽  
Dong C. Zhang ◽  
Michael Mariani ◽  
Kerry A. Landman ◽  
Donald F. Newgreen
Development ◽  
2021 ◽  
Vol 148 (22) ◽  
Author(s):  
Jason A. Morrison ◽  
Rebecca McLennan ◽  
Jessica M. Teddy ◽  
Allison R. Scott ◽  
Jennifer C. Kasemeier-Kulesa ◽  
...  

ABSTRACT The dynamics of multipotent neural crest cell differentiation and invasion as cells travel throughout the vertebrate embryo remain unclear. Here, we preserve spatial information to derive the transcriptional states of migrating neural crest cells and the cellular landscape of the first four chick cranial to cardiac branchial arches (BA1-4) using label-free, unsorted single-cell RNA sequencing. The faithful capture of branchial arch-specific genes led to identification of novel markers of migrating neural crest cells and 266 invasion genes common to all BA1-4 streams. Perturbation analysis of a small subset of invasion genes and time-lapse imaging identified their functional role to regulate neural crest cell behaviors. Comparison of the neural crest invasion signature to other cell invasion phenomena revealed a shared set of 45 genes, a subset of which showed direct relevance to human neuroblastoma cell lines analyzed after exposure to the in vivo chick embryonic neural crest microenvironment. Our data define an important spatio-temporal reference resource to address patterning of the vertebrate head and neck, and previously unidentified cell invasion genes with the potential for broad impact.


2018 ◽  
Vol 27 (15) ◽  
pp. 2628-2643 ◽  
Author(s):  
Kristin E N Watt ◽  
Cynthia L Neben ◽  
Shawn Hall ◽  
Amy E Merrill ◽  
Paul A Trainor

Abstract Ribosome biogenesis is a global process required for growth and proliferation in all cells, but disruptions in this process surprisingly lead to tissue-specific phenotypic disorders termed ribosomopathies. Pathogenic variants in the RNA Polymerase (Pol) I subunit POLR1A cause Acrofacial Dysostosis–Cincinnati type, which is characterized by craniofacial and limb anomalies. In a zebrafish model of Acrofacial Dysostosis–Cincinnati type, we demonstrate that polr1a–/– mutants exhibit deficient 47S rRNA transcription, reduced monosomes and polysomes and, consequently, defects in protein translation. This results in Tp53-dependent neuroepithelial apoptosis, diminished neural crest cell proliferation and cranioskeletal anomalies. This indicates that POLR1A is critical for rRNA transcription, which is considered a rate limiting step in ribosome biogenesis, underpinning its requirement for neuroepithelial cell and neural crest cell proliferation and survival. To understand the contribution of the Tp53 pathway to the pathogenesis of Acrofacial Dysostosis–Cincinnati type, we genetically inhibited tp53 in polr1a–/– mutant embryos. Tp53 inhibition suppresses neuroepithelial apoptosis and partially ameliorates the polr1a mutant phenotype. However, complete rescue of cartilage development is not observed due to the failure to improve rDNA transcription and neural crest cell proliferation. Altogether, these data reveal specific functions for both Tp53-dependent and independent signaling downstream of polr1a in ribosome biogenesis during neural crest cell and craniofacial development, in the pathogenesis of Acrofacial Dysostosis–Cincinnati type. Furthermore, our work sets the stage for identifying Tp53-independent therapies to potentially prevent Acrofacial dysostosis–Cincinnati type and other similar ribosomopathies.


2020 ◽  
Vol 98 (7) ◽  
pp. 1035-1048
Author(s):  
Erge Zhang ◽  
Jianping Yang ◽  
Yang Liu ◽  
Nanchao Hong ◽  
Huilin Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document