scholarly journals The role of Neuropilin-1-VEGF signaling in neural crest cell invasion

2009 ◽  
Vol 331 (2) ◽  
pp. 470
Author(s):  
McLennan Rebecca ◽  
Paul M. Kulesa
Zygote ◽  
2018 ◽  
Vol 26 (6) ◽  
pp. 457-464 ◽  
Author(s):  
Xiao-tan Zhang ◽  
Guang Wang ◽  
Yan Li ◽  
Manli Chuai ◽  
Kenneth Ka Ho Lee ◽  
...  

SummaryFibroblast growth factor (FGF) signalling acts as one of modulators that control neural crest cell (NCC) migration, but how this is achieved is still unclear. In this study, we investigated the effects of FGF signalling on NCC migration by blocking this process. Constructs that were capable of inducing Sprouty2 (Spry2) or dominant-negative FGFR1 (Dn-FGFR1) expression were transfected into the cells making up the neural tubes. Our results revealed that blocking FGF signalling at stage HH10 (neurulation stage) could enhance NCC migration at both the cranial and trunk levels in the developing embryos. It was established that FGF-mediated NCC migration was not due to altering the expression of N-cadherin in the neural tube. Instead, we determined that cyclin D1 was overexpressed in the cranial and trunk levels when Sprouty2 was upregulated in the dorsal neural tube. These results imply that the cell cycle was a target of FGF signalling through which it regulates NCC migration at the neurulation stage.


2007 ◽  
Vol 302 (2) ◽  
pp. 553-568 ◽  
Author(s):  
Matthew J. Simpson ◽  
Dong C. Zhang ◽  
Michael Mariani ◽  
Kerry A. Landman ◽  
Donald F. Newgreen

2011 ◽  
Vol 356 (1) ◽  
pp. 203
Author(s):  
Theresa E. Neiderer ◽  
Abigail Figat ◽  
Lisa Taneyhill

Development ◽  
2001 ◽  
Vol 128 (8) ◽  
pp. 1253-1264 ◽  
Author(s):  
V. Brault ◽  
R. Moore ◽  
S. Kutsch ◽  
M. Ishibashi ◽  
D.H. Rowitch ◽  
...  

('bgr;)-Catenin is a central component of both the cadherin-catenin cell adhesion complex and the Wnt signaling pathway. We have investigated the role of (β)-catenin during brain morphogenesis, by specifically inactivating the (β)-catenin gene in the region of Wnt1 expression. To achieve this, mice with a conditional ('floxed') allele of (β)-catenin with required exons flanked by loxP recombination sequences were intercrossed with transgenic mice that expressed Cre recombinase under control of Wnt1 regulatory sequences. (β)-catenin gene deletion resulted in dramatic brain malformation and failure of craniofacial development. Absence of part of the midbrain and all of the cerebellum is reminiscent of the conventional Wnt1 knockout (Wnt1(−)(/)(−)), suggesting that Wnt1 acts through (β)-catenin in controlling midbrain-hindbrain development. The craniofacial phenotype, not observed in embryos that lack Wnt1, indicates a role for (β)-catenin in the fate of neural crest cells. Analysis of neural tube explants shows that (β)-catenin is efficiently deleted in migrating neural crest cell precursors. This, together with an increased apoptosis in cells migrating to the cranial ganglia and in areas of prechondrogenic condensations, suggests that removal of (β)-catenin affects neural crest cell survival and/or differentiation. Our results demonstrate the pivotal role of (β)-catenin in morphogenetic processes during brain and craniofacial development.


Development ◽  
2021 ◽  
Vol 148 (22) ◽  
Author(s):  
Jason A. Morrison ◽  
Rebecca McLennan ◽  
Jessica M. Teddy ◽  
Allison R. Scott ◽  
Jennifer C. Kasemeier-Kulesa ◽  
...  

ABSTRACT The dynamics of multipotent neural crest cell differentiation and invasion as cells travel throughout the vertebrate embryo remain unclear. Here, we preserve spatial information to derive the transcriptional states of migrating neural crest cells and the cellular landscape of the first four chick cranial to cardiac branchial arches (BA1-4) using label-free, unsorted single-cell RNA sequencing. The faithful capture of branchial arch-specific genes led to identification of novel markers of migrating neural crest cells and 266 invasion genes common to all BA1-4 streams. Perturbation analysis of a small subset of invasion genes and time-lapse imaging identified their functional role to regulate neural crest cell behaviors. Comparison of the neural crest invasion signature to other cell invasion phenomena revealed a shared set of 45 genes, a subset of which showed direct relevance to human neuroblastoma cell lines analyzed after exposure to the in vivo chick embryonic neural crest microenvironment. Our data define an important spatio-temporal reference resource to address patterning of the vertebrate head and neck, and previously unidentified cell invasion genes with the potential for broad impact.


Author(s):  
Jean Paul Thiery ◽  
Roberto Rovasio ◽  
Annie Delouvée ◽  
Michel Vincent ◽  
Jean Loup Duband ◽  
...  

2011 ◽  
Vol 356 (1) ◽  
pp. 197-198
Author(s):  
Yanping Zhang ◽  
Mitchell T. McKnight ◽  
L. Bruno Ruest

Development ◽  
1981 ◽  
Vol 65 (Supplement) ◽  
pp. 225-241
Author(s):  
Gillian M. Morriss-Kay

The pattern of growth and morphogenesis of the cranial neural epithelium of rat embryos during neurulation is described. Transverse sections of the midbrain/hindbrain neural epithelium at different stages (0–14 somites) show a constant area and cell number throughout neurulation, even though there is a high level of mitosis. Mitotic spindles are orientated parallel to the long axis of the embryo, so that increase in cell number occurs in this direction only. Growth is expressed only as an increase in size of the forebrain, which projects rostrad to the tip of the notochord. In the midbrain/upper hindbrain regions, cellular organization of the neural epithelium changes from columnar to cuboidal to pseudostratified, while its shape changes from flat to biconvex to V shaped. Closure is immediately preceded by neural crest cell emigration from the lateral edges. Throughout neurulation the cranial notochord develops an increasingly convex curvature in the rostrocaudal plane. The attached neural epithelium curves with the notochord (forming the primary cranial flexure) so that as its lateral edges move dorsomedially they form a more distant concentric arc with that of the notochord, and are hence stretched during the final closure period. The whole rat embryo culture technique was used to investigate the morphogenetic role of proteoglycans during neurulation, neural crest cell emigration and other events in the lateral edge region prior to closure, and the importance of microfilament contraction during concave curvature of the neural epithelium.


Sign in / Sign up

Export Citation Format

Share Document