scholarly journals The role of GPI-anchored proteins in chondrogenesis and cell polarity

2008 ◽  
Vol 319 (2) ◽  
pp. 482
Author(s):  
Molly J. Ahrens ◽  
Andrew T. Dudley
Keyword(s):  
Development ◽  
2021 ◽  
pp. dev.196956
Author(s):  
Juan Lu ◽  
Wei Dong ◽  
Yan Tao ◽  
Yang Hong

Discs large (Dlg) is an essential polarity protein and a tumor suppressor originally characterized in Drosophila but is also well conserved in vertebrates. Like the majority of polarity proteins, plasma membrane (PM)/cortical localization of Dlg is required for its function in polarity and tumorigenesis, but the exact mechanisms targeting Dlg to PM remain to be fully elucidated. Here we show that, similar to the recently discovered polybasic polarity proteins such as Lgl and aPKC, Dlg also contains a positively charged polybasic domain that electrostatically binds the PM phosphoinositides PI4P and PI(4,5)P2. Electrostatic targeting by the polybasic domain contributes significantly to the PM localization of Dlg in follicular and early embryonic epithelial cells, and is crucial for Dlg to regulate both polarity and tumorigenesis. The electrostatic PM targeting of Dlg is controlled by a potential phosphorylation-dependent allosteric regulation of its polybasic domain, and is specifically enhanced by the interactions between Dlg and another basolateral polarity protein and tumor suppressor Scrib. Our studies highlight an increasingly significant role of electrostatic PM targeting of polarity proteins in regulating cell polarity.


2009 ◽  
Vol 238 (7) ◽  
pp. 1709-1726 ◽  
Author(s):  
Martina Nagel ◽  
Olivia Luu ◽  
Nicolas Bisson ◽  
Bojan Macanovic ◽  
Tom Moss ◽  
...  

2011 ◽  
Vol 90 (2-3) ◽  
pp. 198-204 ◽  
Author(s):  
James Monypenny ◽  
Hsiu-Chuan Chou ◽  
Inmaculada Bañón-Rodríguez ◽  
Adrian J. Thrasher ◽  
Inés M. Antón ◽  
...  
Keyword(s):  

2002 ◽  
Vol 383 (10) ◽  
pp. 1475-1480 ◽  
Author(s):  
M. Bagnat ◽  
K. Simons

Abstract Cellular membranes contain many types and species of lipids. One of the most important functional consequences of this heterogeneity is the existence of microdomains within the plane of the membrane. Sphingolipid acyl chains have the ability of forming tightly packed platforms together with sterols. These platforms or lipid rafts constitute segregation and sorting devices into which proteins specifically associate. In budding yeast, Saccharomyces cerevisiae, lipid rafts serve as sorting platforms for proteins destined to the cell surface. The segregation capacity of rafts also provides the basis for the polarization of proteins at the cell surface during mating. Here we discuss some recent findings that stress the role of lipid rafts as key players in yeast protein sorting and cell polarity.


2008 ◽  
Vol 19 (12) ◽  
pp. 5456-5477 ◽  
Author(s):  
Yunkyoung Song ◽  
Seon Ah Cheon ◽  
Kyung Eun Lee ◽  
So-Yeon Lee ◽  
Byung-Kyu Lee ◽  
...  

RAM (regulation of Ace2p transcription factor and polarized morphogenesis) is a conserved signaling network that regulates polarized morphogenesis in yeast, worms, flies, and humans. To investigate the role of the RAM network in cell polarity and hyphal morphogenesis of Candida albicans, each of the C. albicans RAM genes (CaCBK1, CaMOB2, CaKIC1, CaPAG1, CaHYM1, and CaSOG2) was deleted. All C. albicans RAM mutants exhibited hypersensitivity to cell-wall- or membrane-perturbing agents, exhibiting cell-separation defects, a multinucleate phenotype and loss of cell polarity. Yeast two-hybrid and in vivo functional analyses of CaCbk1p and its activator, CaMob2p, the key factors in the RAM network, demonstrated that the direct interaction between the SMA domain of CaCbk1p and the Mob1/phocein domain of CaMob2p was necessary for hyphal growth of C. albicans. Genome-wide transcription profiling of a Camob2 mutant suggested that the RAM network played a role in serum- and antifungal azoles–induced activation of ergosterol biosynthesis genes, especially those involved in the late steps of ergosterol biosynthesis, and might be associated, at least indirectly, with the Tup1p-Nrg1p pathway. Collectively, these results demonstrate that the RAM network is critically required for hyphal growth as well as normal vegetative growth in C. albicans.


2015 ◽  
Vol 1615 ◽  
pp. 22-30 ◽  
Author(s):  
Xiao-yu Yang ◽  
Kai Jin ◽  
Rui Ma ◽  
Juan-mei Yang ◽  
Wen-wei Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document