scholarly journals Nuclear Factor I-C promotes proliferation and differentiation of apical papilla-derived human stem cells in vitro

2015 ◽  
Vol 332 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Jing Zhang ◽  
Zhihua Wang ◽  
Yong Jiang ◽  
Zhongying Niu ◽  
Lei Fu ◽  
...  
1988 ◽  
Vol 8 (10) ◽  
pp. 4557-4560
Author(s):  
O Bakker ◽  
J N Philipsen ◽  
B C Hennis ◽  
G Ab

The estrogen-dependent binding of a protein to the upstream region of the chicken vitellogenin gene was detected by using in vivo dimethyl sulfate, genomic DNase I, and in vitro exonuclease III footprinting. The site is located between base pairs -848 and -824, and its sequence resembles that of the nuclear factor I binding site. The results suggest that a nuclear factor binding to this site is involved in the regulation of the vitellogenin gene.


1985 ◽  
Vol 5 (5) ◽  
pp. 964-971
Author(s):  
R M Gronostajski ◽  
S Adhya ◽  
K Nagata ◽  
R A Guggenheimer ◽  
J Hurwitz

Nuclear factor I is a cellular site-specific DNA-binding protein required for the efficient in vitro replication of adenovirus DNA. We have characterized human DNA sequences to which nuclear factor I binds. Three nuclear factor I binding sites (FIB sites), isolated from HeLa cell DNA, each contain the sequence TGG(N)6-7GCCAA. Comparison with other known and putative FIB sites suggests that this sequence is important for the binding of nuclear factor I. Nuclear factor I protects a 25- to 30-base-pair region surrounding this sequence from digestion by DNase I. Methylation protection studies suggest that nuclear factor I interacts with guanine residues within the TGG(N)6-7GCCAA consensus sequence. One binding site (FIB-2) contained a restriction endonuclease HaeIII cleavage site (GGCC) at the 5' end of the GCCAA motif. Digestion of FIB-2 with HaeIII abolished the binding of nuclear factor I. Southern blot analyses indicate that the cellular FIB sites described here are present within single-copy DNA in the HeLa cell genome.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 974 ◽  
Author(s):  
José Luis Sanz ◽  
Leopoldo Forner ◽  
Alicia Almudéver ◽  
Julia Guerrero-Gironés ◽  
Carmen Llena

Blood clot formation in the apical third of the root canal system has been shown to promote further root development and reinforcement of dentinal walls by the deposition of mineralized tissue, resulting in an advancement from traditional apexification procedures to a regenerative endodontic treatment (RET) for non-vital immature permanent teeth. Silicate-based hydraulic biomaterials, categorized as bioactive endodontic cements, emerged as bright candidates for their use in RET as coronal barriers, sealing the previously induced blood clot scaffold. Human stem cells from the apical papilla (hSCAPs) surviving the infection may induce or at least be partially responsible for the regeneration or repair shown in RET. The aim of this study is to present a qualitative synthesis of available literature consisting of in vitro assays which analyzed the viability and stimulation of hSCAPs induced by silicate-based hydraulic biomaterials. A systematic electronic search was carried out in Medline, Scopus, Embase, Web of Science, Cochrane and SciELO databases, followed by a study selection, data extraction, and quality assessment following the PRISMA protocol. In vitro studies assessing the viability, proliferation, and/or differentiation of hSCAPs as well as their mineralization potential and/or osteogenic, odontogenic, cementogenic and/or angiogenic marker expression in contact with commercially available silicate-based materials were included in the present review. The search identified 73 preliminary references, of which 10 resulted to be eligible for qualitative synthesis. The modal materials studied were ProRoot MTA and Biodentine. Both bioceramic materials showed significant positive results when compared to a control for hSCAP cell viability, migration, and proliferation assays; a significant up-regulation of hSCAP odontogenic/osteogenic marker (ALP, DSPP, BSP, Runx2, OCN, OSX), angiogenic growth factor (VEGFA, FIGF) and pro-inflammatory cytokine (IL-1α, IL-1β, IL-6, TNF-α) expression; and a significant increase in hSCAP mineralized nodule formation assessed by Alizarin Red staining. Commercially available silicate-based materials considered in the present review can potentially induce mineralization and odontogenic/osteogenic differentiation of hSCAPs, thus prompting their use in regenerative endodontic procedures.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Chao Mu ◽  
Taohong Lv ◽  
Zilu Wang ◽  
Shu Ma ◽  
Jie Ma ◽  
...  

Background Information. Stem cells from apical papilla (SCAPs) are a potent candidate for the apexogenesis/apexification due to their multiple differentiation capacity. During the orthodontic treatment of developing teeth, SCAPsin vivoare usually subjected to the cyclic stress induced by compression forces. However, it remains unclear whether mechanical stress can affect the proliferation and differentiation of human SCAPs.Results. Human SCAPs were isolated and stimulated by 200 g mechanical stimuli for 30 min and their proliferation and differentiation capacity were evaluatedin vitroat different time points. MTT and FCM results demonstrated that cell proliferation was enhanced, while TEM findings showed the morphological and ultrastructural changes in stress-treated SCAPs. ALP activity and mineralization capacity of stress-treated SCAPs were upregulated . In the meantime, higher odontogenic and osteogenic differentiation were found in stress-treated SCAPs by real-time RT-PCR and Western blot, as indicated by the expression of related markers at both mRNA and protein levels. Moreover, the protein expressions of pJNK and pERK MAPK pathways were upregulated.Conclusion. Together, these findings suggest that mechanical stress is an important factor affecting the proliferation and differentiation of SCAPs via the activation of ERK and JNK signaling pathway.


1991 ◽  
Vol 11 (6) ◽  
pp. 2946-2951
Author(s):  
J J Knox ◽  
P J Rebstein ◽  
A Manoukian ◽  
R M Gronostajski

Nuclear factor I (NFI) is composed of a family of site-specific DNA-binding proteins which recognize a DNA-binding site with the consensus sequence TGGC/A(N)5GCCAA. Binding sites for NFI have previously been shown to stimulate mRNA synthesis in vitro when present upstream of the TATA box of the adenovirus major late promoter (AdMLP). We have examined the effect of NFI-binding sites on transcription in vivo in transiently transfected HeLa and COS cells. An NFI-binding site isolated from the human genome activated expression from the minimal AdMLP in vivo in both the absence and presence of the simian virus 40 enhancer. A point mutation that decreased NFI binding affinity for the site in vitro reduced expression to near the basal level of the AdMLP. Several NFI-binding sites which differed in their spacer and flanking sequences were tested for their ability to activate expression in vivo. The ability of these sites to activate expression correlated with the strength of NFI binding in vitro. An NFI-binding site stimulated expression equally well when placed from 33 to 65 bp upstream of the TATA box. However, expression dropped to basal levels when the site was located from 71 to 77 bp upstream of the TATA box. These studies indicate that an NFI-binding site in this chimeric promoter activates expression in vivo only if located within a critical distance of the TATA box.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Junjun Li ◽  
Ming Yan ◽  
Zilu Wang ◽  
Shuanglin Jing ◽  
Yao Li ◽  
...  

Background Information. NF-κB signaling pathway plays a complicated role in the biological functions of mesenchymal stem cells. However, the effects of NF-κB pathway on the odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs) remain unclear. The present study was designed to evaluate the effects of canonical NF-κB pathway on the osteo/odontogenic capacity of SCAPsin vitro.Results. Western blot results demonstrated that NF-κB pathway in SCAPs was successfully activated by TNF-αor blocked by BMS-345541. NF-κB pathway-activated SCAPs presented a higher proliferation activity compared with control groups, as indicated by dimethyl-thiazol-diphenyl tetrazolium bromide assay (MTT) and flow cytometry assay (FCM). Wound scratch assay revealed that NF-κB pathway-activated SCAPs presented an improved migration capacity, enhanced alkaline phosphatase (ALP) activity, and upregulated mineralization capacity of SCAPs, as compared with control groups. Meanwhile, the odonto/osteogenic markers (ALP/ALP,RUNX2/RUNX2,OSX/OSX,OCN/OCN,OPN/OPN,BSP/BSP,DSPP/DSP, andDMP-1/DMP-1) in NF-κB pathway-activated SCAPs were also significantly upregulated as compared with control groups at both protein and mRNA levels. However, NF-κB pathway-inhibited SCAPs exhibited a lower proliferation/migration capacity, and decreased odonto/osteogenic ability in comparison with control groups.Conclusion. Our findings suggest that classical NF-κB pathway plays a paramount role in the proliferation and committed differentiation of SCAPs.


1989 ◽  
Vol 9 (12) ◽  
pp. 5548-5562 ◽  
Author(s):  
B Corthésy ◽  
J R Cardinaux ◽  
F X Claret ◽  
W Wahli

A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.


Sign in / Sign up

Export Citation Format

Share Document