Phospholipase Cβ1 (PLCβ1)-positive neurons in the brain are activated during sexual behavior in male mice

2006 ◽  
Vol 27 (1) ◽  
pp. 146 ◽  
Author(s):  
Alison J. Douglas ◽  
Katie Lunn ◽  
Peter Kind ◽  
Norah Spears
Keyword(s):  
Endocrinology ◽  
2020 ◽  
Vol 161 (10) ◽  
Author(s):  
David C Brooks ◽  
John S Coon V ◽  
Cihangir M Ercan ◽  
Xia Xu ◽  
Hongxin Dong ◽  
...  

Abstract The biologically active estrogen estradiol has important roles in adult brain physiology and sexual behavior. A single gene, Cyp19a1, encodes aromatase, the enzyme that catalyzes the conversion of testosterone to estradiol in the testis and brain of male mice. Estradiol formation was shown to regulate sexual activity in various species, but the relative contributions to sexual behavior of estrogen that arises in the brain versus from the gonads remained unclear. To determine the role of brain aromatase in regulating male sexual activity, we generated a brain-specific aromatase knockout (bArKO) mouse. A newly generated whole-body total aromatase knockout mouse of the same genetic background served as a positive control. Here we demonstrate that local aromatase expression and estrogen production in the brain is partially required for male sexual behavior and sex hormone homeostasis. Male bArKO mice exhibited decreased sexual activity in the presence of strikingly elevated circulating testosterone. In castrated adult bArKO mice, administration of testosterone only partially restored sexual behavior; full sexual behavior, however, was achieved only when both estradiol and testosterone were administered together. Thus, aromatase in the brain is, in part, necessary for testosterone-dependent male sexual activity. We also found that brain aromatase is required for negative feedback regulation of circulating testosterone of testicular origin. Our findings suggest testosterone activates male sexual behavior in part via conversion to estradiol in the brain. These studies provide foundational evidence that sexual behavior may be modified through inhibition or enhancement of brain aromatase enzyme activity and/or utilization of selective estrogen receptor modulators.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
David C Brooks ◽  
Hong Zhao ◽  
John Coon V ◽  
C Mutlu Ercan ◽  
Hongxin Dong ◽  
...  

Abstract Introduction: The biologically active form of estrogen, estradiol (E2), has important organizational roles in brain development and activational roles in adult brain physiology and behavior. It has been proposed that E2 formation in the brain might regulate sexual activity in various species. The mechanisms that link estrogen formation in the brain and sexual behavior, however, remain unclear. Aromatase is the key enzyme that catalyzes the conversion of testosterone (T) to E2 in the testis and brain of male mice. To determine the role of brain aromatase in male sexual activity, we generated a brain-specific aromatase knockout (bArKO) mouse model. Additionally, a newly generated total aromatase knockout (tArKO) mouse model served as a positive control. Methods: We generated the floxed aromatase mice (Aromfl/fl), which flanked the transcription and translation start sites and the common splice acceptor site for the upstream brain promoter I.f of the aromatase gene. We then crossed Nestin-Cre mice with Aromfl/fl mice to generate bArKO mice. Using the same Aromfl/fl mice, we bred tArKO via crossing with ZP3-Cre mice. Circulating and tissue (brain and testis) E2 levels were measured using liquid chromatography-tandem mass spectrometry. We assessed sexual activity in 12-14 week-old bArKO, tArKO and littermate control males over two 30-minute trials. The interactions were monitored and videotaped, and the videotape was scored for the sexual activity. To investigate whether the lack of estrogen production in the brain was causative for altered sexual behavior, 20 bArKO and 20 control mice were castrated at ~nine weeks of age and supplemented with exogenous sex hormone via 60-day time release pellet implantation. Results: E2 levels are significantly decreased in the brain but not the testis of bArKO mice as compared to control mice (P < 0.05, n=6-12). As expected, E2 levels in the brain and testis are significantly lower in tArKO mice compared with their WT littermates (n=6-9). Furthermore, we demonstrate that local aromatase expression and estrogen production in the brain is required for male sexual behavior and sex hormone homeostasis. Male bArKO mice exhibited significantly decreased sexual activity in the presence of strikingly elevated circulating T (n=5). In castrated adult bArKO mice, administration of E2 together with T restored maximum sexual behavior (n=5). Thus, aromatase in the brain is necessary for T-dependent male sexual activity. We also found that brain aromatase is required for negative feedback regulation of circulating T of testicular origin. Conclusion: Our findings suggest T activates male sexual behavior in part via conversion to E2 in the brain and provide the foundation for inhibition or enhancement of brain aromatase enzyme activity and/or utilization of selective estrogen receptor modulators in modifying sexual behavior. DCB and HZ contributed equally to this work.


2004 ◽  
Vol 171 (4S) ◽  
pp. 429-429
Author(s):  
Masayoshi Nomura ◽  
Naohiro Fujimoto ◽  
Donald W. Pfaff ◽  
Sonoko Ogawa ◽  
Tetsuro Matsumoto

2014 ◽  
Vol 18 (2) ◽  
pp. 106-111 ◽  
Author(s):  
Zhi Jun Zang ◽  
Su Yun Ji ◽  
Wang Dong ◽  
Ya Nan Zhang ◽  
Er Hong Zhang ◽  
...  

2018 ◽  
Vol 81 ◽  
pp. 34-40 ◽  
Author(s):  
Renata K. Carvalho ◽  
Maingredy R. Souza ◽  
Monaliza L. Santos ◽  
Francisco S. Guimarães ◽  
Roger Luís H. Pobbe ◽  
...  

Brain ◽  
2020 ◽  
Vol 143 (3) ◽  
pp. 811-832 ◽  
Author(s):  
Yunan Gao ◽  
Elaine E Irvine ◽  
Ioanna Eleftheriadou ◽  
Carlos Jiménez Naranjo ◽  
Francesca Hearn-Yeates ◽  
...  

Abstract Cyclin-dependent kinase-like 5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. It predominantly affects females who typically present with severe early epileptic encephalopathy, global developmental delay, motor dysfunction, autistic features and sleep disturbances. To develop a gene replacement therapy, we initially characterized the human CDKL5 transcript isoforms expressed in the brain, neuroblastoma cell lines, primary astrocytes and embryonic stem cell-derived cortical interneurons. We found that the isoform 1 and to a lesser extent the isoform 2 were expressed in human brain, and both neuronal and glial cell types. These isoforms were subsequently cloned into recombinant adeno-associated viral (AAV) vector genome and high-titre viral vectors were produced. Intrajugular delivery of green fluorescence protein via AAV vector serotype PHP.B in adult wild-type male mice transduced neurons and astrocytes throughout the brain more efficiently than serotype 9. Cdkl5 knockout male mice treated with isoform 1 via intrajugular injection at age 28–30 days exhibited significant behavioural improvements compared to green fluorescence protein-treated controls (1012 vg per animal, n = 10 per group) with PHP.B vectors. Brain expression of the isoform 1 transgene was more abundant in hindbrain than forebrain and midbrain. Transgene brain expression was sporadic at the cellular level and most prominent in hippocampal neurons and cerebellar Purkinje cells. Correction of postsynaptic density protein 95 cerebellar misexpression, a major fine cerebellar structural abnormality in Cdkl5 knockout mice, was found in regions of high transgene expression within the cerebellum. AAV vector serotype DJ efficiently transduced CDKL5-mutant human induced pluripotent stem cell-derived neural progenitors, which were subsequently differentiated into mature neurons. When treating CDKL5-mutant neurons, isoform 1 expression led to an increased density of synaptic puncta, while isoform 2 ameliorated the calcium signalling defect compared to green fluorescence protein control, implying distinct functions of these isoforms in neurons. This study provides the first evidence that gene therapy mediated by AAV vectors can be used for treating CDKL5 disorder.


Sign in / Sign up

Export Citation Format

Share Document