Hormone Dependent Differentiation, Maturation and Function of the Brain and Sexual Behavior

1977 ◽  
pp. 21-42
Author(s):  
Günter Dörner
Author(s):  
Caroline A. Miller ◽  
Laura L. Bruce

The first visual cortical axons arrive in the cat superior colliculus by the time of birth. Adultlike receptive fields develop slowly over several weeks following birth. The developing cortical axons go through a sequence of changes before acquiring their adultlike morphology and function. To determine how these axons interact with neurons in the colliculus, cortico-collicular axons were labeled with biocytin (an anterograde neuronal tracer) and studied with electron microscopy.Deeply anesthetized animals received 200-500 nl injections of biocytin (Sigma; 5% in phosphate buffer) in the lateral suprasylvian visual cortical area. After a 24 hr survival time, the animals were deeply anesthetized and perfused with 0.9% phosphate buffered saline followed by fixation with a solution of 1.25% glutaraldehyde and 1.0% paraformaldehyde in 0.1M phosphate buffer. The brain was sectioned transversely on a vibratome at 50 μm. The tissue was processed immediately to visualize the biocytin.


Hand ◽  
2021 ◽  
pp. 155894472199246
Author(s):  
David D. Rivedal ◽  
Meng Guo ◽  
James Sanger ◽  
Aaron Morgan

Targeted muscle reinnervation (TMR) has been shown to improve phantom and neuropathic pain in both the acute and chronic amputee population. Through rerouting of major peripheral nerves into a newly denervated muscle, TMR harnesses the plasticity of the brain, helping to revert the sensory cortex back toward the preinsult state, effectively reducing pain. We highlight a unique case of an above-elbow amputee for sarcoma who was initially treated with successful transhumeral TMR. Following inadvertent nerve biopsy of a TMR coaptation site, his pain returned, and he was unable to don his prosthetic. Revision of his TMR to a more proximal level was performed, providing improved pain and function of the amputated arm. This is the first report to highlight the concept of secondary neuroplasticity and successful proximal TMR revision in the setting of multiple insults to the same extremity.


Author(s):  
Enrico Castroflorio ◽  
Joery den Hoed ◽  
Daria Svistunova ◽  
Mattéa J. Finelli ◽  
Alberto Cebrian-Serrano ◽  
...  

Abstract Members of the Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic (TLDc) protein family are associated with multiple neurodevelopmental disorders, although their exact roles in disease remain unclear. For example, nuclear receptor coactivator 7 (NCOA7) has been associated with autism, although almost nothing is known regarding the mode-of-action of this TLDc protein in the nervous system. Here we investigated the molecular function of NCOA7 in neurons and generated a novel mouse model to determine the consequences of deleting this locus in vivo. We show that NCOA7 interacts with the cytoplasmic domain of the vacuolar (V)-ATPase in the brain and demonstrate that this protein is required for normal assembly and activity of this critical proton pump. Neurons lacking Ncoa7 exhibit altered development alongside defective lysosomal formation and function; accordingly, Ncoa7 deletion animals exhibited abnormal neuronal patterning defects and a reduced expression of lysosomal markers. Furthermore, behavioural assessment revealed anxiety and social defects in mice lacking Ncoa7. In summary, we demonstrate that NCOA7 is an important V-ATPase regulatory protein in the brain, modulating lysosomal function, neuronal connectivity and behaviour; thus our study reveals a molecular mechanism controlling endolysosomal homeostasis that is essential for neurodevelopment. Graphic abstract


2020 ◽  
Vol 4 (11) ◽  
Author(s):  
Katherine M Ranard ◽  
Matthew J Kuchan ◽  
John W Erdman

ABSTRACT Studying vitamin E [α-tocopherol (α-T)] metabolism and function in the brain and other tissues requires an animal model with low α-T status, such as the transgenic α-T transfer protein (Ttpa)–null (Ttpa−/−) mouse model. Ttpa+/− dams can be used to produce Ttpa−/− and Ttpa+/+mice for these studies. However, the α-T content in Ttpa+/− dams’ diet requires optimization; diets must provide sufficient α-T for reproduction, while minimizing the transfer of α-T to the offspring destined for future studies that require low baseline α-T status. The goal of this work was to assess the effectiveness and feasibility of 2 breeding diet strategies on reproduction outcomes and offspring brain α-T concentrations. These findings will help standardize the breeding methodology used to generate the Ttpa−/− mice for neurological studies.


2006 ◽  
Vol 34 (5) ◽  
pp. 863-867 ◽  
Author(s):  
S. Mizielinska ◽  
S. Greenwood ◽  
C.N. Connolly

Maintaining the correct balance in neuronal activation is of paramount importance to normal brain function. Imbalances due to changes in excitation or inhibition can lead to a variety of disorders ranging from the clinically extreme (e.g. epilepsy) to the more subtle (e.g. anxiety). In the brain, the most common inhibitory synapses are regulated by GABAA (γ-aminobutyric acid type A) receptors, a role commensurate with their importance as therapeutic targets. Remarkably, we still know relatively little about GABAA receptor biogenesis. Receptors are constructed as pentameric ion channels, with α and β subunits being the minimal requirement, and the incorporation of a γ subunit being necessary for benzodiazepine modulation and synaptic targeting. Insights have been provided by the discovery of several specific assembly signals within different GABAA receptor subunits. Moreover, a number of recent studies on GABAA receptor mutations associated with epilepsy have further enhanced our understanding of GABAA receptor biogenesis, structure and function.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 957
Author(s):  
Brad T. Casali ◽  
Erin G. Reed-Geaghan

Microglia are the resident immune cells of the brain, deriving from yolk sac progenitors that populate the brain parenchyma during development. During development and homeostasis, microglia play critical roles in synaptogenesis and synaptic plasticity, in addition to their primary role as immune sentinels. In aging and neurodegenerative diseases generally, and Alzheimer’s disease (AD) specifically, microglial function is altered in ways that significantly diverge from their homeostatic state, inducing a more detrimental inflammatory environment. In this review, we discuss the receptors, signaling, regulation and gene expression patterns of microglia that mediate their phenotype and function contributing to the inflammatory milieu of the AD brain, as well as strategies that target microglia to ameliorate the onset, progression and symptoms of AD.


2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


2014 ◽  
Vol 5 (5) ◽  
pp. 371-382 ◽  
Author(s):  
Suyan Li ◽  
Sampada Joshee ◽  
Anju Vasudevan

AbstractMidbrain GABA neurons, endowed with multiple morphological, physiological and molecular characteristics as well as projection patterns are key players interacting with diverse regions of the brain and capable of modulating several aspects of behavior. The diversity of these GABA neuronal populations based on their location and function in the dorsal, medial or ventral midbrain has challenged efforts to rapidly uncover their developmental regulation. Here we review recent developments that are beginning to illuminate transcriptional control of GABA neurons in the embryonic midbrain (mesencephalon) and discuss its implications for understanding and treatment of neurological and psychiatric illnesses.


1998 ◽  
Vol 15 (1) ◽  
pp. 26-28
Author(s):  
CS Breathnach

AbstractInterest in the psychiatric aspects of old age predated the institution of geriatrics as a clinical discipline, but the systematic study of the ageing brain only began in the second half of this century when an ageing population presented a global numerical challenge to society. In the senescent cerebral cortex, though the number of neurons is not reduced, cell shrinkage results in synaptic impoverishment with consequent cognitive impairment. Recent advances in imaging techniques, combined with burgeoning knowledge of neurobiological structure and function, have increased our understanding of the ageing processes in the human brain and permit an optimistic approach in the application of the newer insights into neuropsychology and geriatric psychiatry.


Sign in / Sign up

Export Citation Format

Share Document