scholarly journals OR09-03 Brain Aromatase Is Essential for Regulation of Sexual Activity in Male Mice

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
David C Brooks ◽  
Hong Zhao ◽  
John Coon V ◽  
C Mutlu Ercan ◽  
Hongxin Dong ◽  
...  

Abstract Introduction: The biologically active form of estrogen, estradiol (E2), has important organizational roles in brain development and activational roles in adult brain physiology and behavior. It has been proposed that E2 formation in the brain might regulate sexual activity in various species. The mechanisms that link estrogen formation in the brain and sexual behavior, however, remain unclear. Aromatase is the key enzyme that catalyzes the conversion of testosterone (T) to E2 in the testis and brain of male mice. To determine the role of brain aromatase in male sexual activity, we generated a brain-specific aromatase knockout (bArKO) mouse model. Additionally, a newly generated total aromatase knockout (tArKO) mouse model served as a positive control. Methods: We generated the floxed aromatase mice (Aromfl/fl), which flanked the transcription and translation start sites and the common splice acceptor site for the upstream brain promoter I.f of the aromatase gene. We then crossed Nestin-Cre mice with Aromfl/fl mice to generate bArKO mice. Using the same Aromfl/fl mice, we bred tArKO via crossing with ZP3-Cre mice. Circulating and tissue (brain and testis) E2 levels were measured using liquid chromatography-tandem mass spectrometry. We assessed sexual activity in 12-14 week-old bArKO, tArKO and littermate control males over two 30-minute trials. The interactions were monitored and videotaped, and the videotape was scored for the sexual activity. To investigate whether the lack of estrogen production in the brain was causative for altered sexual behavior, 20 bArKO and 20 control mice were castrated at ~nine weeks of age and supplemented with exogenous sex hormone via 60-day time release pellet implantation. Results: E2 levels are significantly decreased in the brain but not the testis of bArKO mice as compared to control mice (P < 0.05, n=6-12). As expected, E2 levels in the brain and testis are significantly lower in tArKO mice compared with their WT littermates (n=6-9). Furthermore, we demonstrate that local aromatase expression and estrogen production in the brain is required for male sexual behavior and sex hormone homeostasis. Male bArKO mice exhibited significantly decreased sexual activity in the presence of strikingly elevated circulating T (n=5). In castrated adult bArKO mice, administration of E2 together with T restored maximum sexual behavior (n=5). Thus, aromatase in the brain is necessary for T-dependent male sexual activity. We also found that brain aromatase is required for negative feedback regulation of circulating T of testicular origin. Conclusion: Our findings suggest T activates male sexual behavior in part via conversion to E2 in the brain and provide the foundation for inhibition or enhancement of brain aromatase enzyme activity and/or utilization of selective estrogen receptor modulators in modifying sexual behavior. DCB and HZ contributed equally to this work.

Endocrinology ◽  
2020 ◽  
Vol 161 (10) ◽  
Author(s):  
David C Brooks ◽  
John S Coon V ◽  
Cihangir M Ercan ◽  
Xia Xu ◽  
Hongxin Dong ◽  
...  

Abstract The biologically active estrogen estradiol has important roles in adult brain physiology and sexual behavior. A single gene, Cyp19a1, encodes aromatase, the enzyme that catalyzes the conversion of testosterone to estradiol in the testis and brain of male mice. Estradiol formation was shown to regulate sexual activity in various species, but the relative contributions to sexual behavior of estrogen that arises in the brain versus from the gonads remained unclear. To determine the role of brain aromatase in regulating male sexual activity, we generated a brain-specific aromatase knockout (bArKO) mouse. A newly generated whole-body total aromatase knockout mouse of the same genetic background served as a positive control. Here we demonstrate that local aromatase expression and estrogen production in the brain is partially required for male sexual behavior and sex hormone homeostasis. Male bArKO mice exhibited decreased sexual activity in the presence of strikingly elevated circulating testosterone. In castrated adult bArKO mice, administration of testosterone only partially restored sexual behavior; full sexual behavior, however, was achieved only when both estradiol and testosterone were administered together. Thus, aromatase in the brain is, in part, necessary for testosterone-dependent male sexual activity. We also found that brain aromatase is required for negative feedback regulation of circulating testosterone of testicular origin. Our findings suggest testosterone activates male sexual behavior in part via conversion to estradiol in the brain. These studies provide foundational evidence that sexual behavior may be modified through inhibition or enhancement of brain aromatase enzyme activity and/or utilization of selective estrogen receptor modulators.


2016 ◽  
Vol 85 ◽  
pp. 26-29
Author(s):  
Christine M. McInnis ◽  
Samitha Venu ◽  
Jin Ho Park

2019 ◽  
Vol 359 ◽  
pp. 502-515
Author(s):  
Catherine de Bournonville ◽  
Mélanie Schmit ◽  
Maxim Telle ◽  
Lucas Court ◽  
Gregory F. Ball ◽  
...  

Author(s):  
Di Li ◽  
Jinwei Ren ◽  
Lixia He ◽  
Jingqin Sun ◽  
Peng Liu ◽  
...  

Male sexual debility affects patients’ confidence and damages the relationship between the couples and thus affects the stability of the family. This study aimed to investigate the effects of oligopeptides isolated from ginseng and oyster (GOPs and OOPs), separately and in combination, on sexual function in male mice. In the first experiment, male mice were randomly divided into five groups: vehicle control group; whey protein (125.0 mg kg−1) group; and GOPs 62.5, 125.0, and 250.0 mg kg−1 groups. In the second experiment, male mice were randomly divided into five groups: vehicle control group, whey protein (160.0 mg kg−1) group, and OOPs 80.0, 160.0, and 320.0 mg kg−1 groups. In the third experiment, male mice were randomly divided into six groups: vehicle control group, whey protein (222.5 mg kg−1) group, and GOPs + OOPs 62.5 + 160.0, 62.5 + 320.0, and 125.0 + 160.0, 125.0 + 320.0 mg kg−1 groups. Test substances were given by gavage once a day for 30 days. The sexual behavior parameters, serum nitric oxide (NO), testosterone, cyclic guanosine monophosphate (cGMP), and phosphodiesterase-5 (PDE5) concentrations were detected. We found that GOPs at 250.0 mg kg−1 improved male sexual behavior, NO, and testosterone content, whereas GOPs at 62.5 and 125.0 mg kg−1 and OOPs at 80.0, 160, and 320 mg kg−1 did not have significant effects. The combination of 62.5 mg kg−1 GOPs + 160.0 mg kg−1 OOPs and the combination of 125.0 mg kg−1 GOPs + 320.0 mg kg−1 OOPs improved male sexual behavior, serum NO, testosterone, and cGMP contents and decreased PDE5 content. The combination of 62.5 mg kg−1 GOPs and 160.0 mg kg−1 OOPs had the best effects among four combined groups. These results suggested that GOPs in combination with OOPs had the synergistic effects of enhancing male sexual function, probably via elevating serum testosterone, NO, and corpus cavernosum cGMP level and decreasing the corpus cavernosum PDE5 level. GOPs and OOPs could be novel natural agents for improving male sexual function.


Author(s):  
Jacques Balthazart ◽  
Gregory F. Ball

It is well established that testosterone from testicular origin plays a critical role in the activation of male sexual behavior in most, if not all, vertebrate species. These effects take place to a large extent in the preoptic area although other brain sites are obviously also implicated. In its target areas, testosterone is actively metabolized either into estrogenic and androgenic steroids that have specific behavioral effects or into inactive metabolites. These transformations either amplify the behavioral activity of testosterone or, alternatively, metabolism to an inactive compound dissipates any biological effect. Androgens and estrogens then bind to nuclear receptors that modulate the transcription of specific genes. This process is controlled by a variety of co-activators and co-repressors that, respectively, enhance or inhibit these transcriptional processes. In addition, recent work has shown that the production of estrogens by brain aromatase can be modulated within minutes by changes in neural activity and that these rapid changes in neuroestrogen production impact sexual behavior, in particular sexual motivation within the same time frame. Estrogens thus affect specific aspects of male sexual behavior in two different time frames via two types of mechanisms that are completely different. Multiple questions remain open concerning the cellular brain mechanisms that mediate testosterone action on male sexual behavior.


2019 ◽  
Vol 113 ◽  
pp. 38-46 ◽  
Author(s):  
Jay Scott Templin ◽  
Joshua C. Wyrosdic ◽  
Caroline D. David ◽  
Brianna N. Wyrosdic ◽  
Hannah E. Lapp ◽  
...  

2006 ◽  
Vol 27 (1) ◽  
pp. 146 ◽  
Author(s):  
Alison J. Douglas ◽  
Katie Lunn ◽  
Peter Kind ◽  
Norah Spears
Keyword(s):  

2020 ◽  
Vol 17 (1) ◽  
pp. 80-92 ◽  
Author(s):  
Lisa Gadomsky ◽  
Malena dos Santos Guilherme ◽  
Jakob Winkler ◽  
Michael A. van der Kooij ◽  
Tobias Hartmann ◽  
...  

Background: Function of the Amyloid Precursor Protein (AβPP) and its various cleavage products still is not unraveled down to the last detail. While its role as a source of the neurotoxic Amyloid beta (Aβ) peptides in Alzheimer’s Disease (AD) is undisputed and its property as a cell attachment protein is intriguing, while functions outside the neuronal context are scarcely investigated. This is particularly noteworthy because AβPP has a ubiquitous expression profile and its longer isoforms, AβPP750 and 770, are found in various tissues outside the brain and in non-neuronal cells. Objective: Here, we aimed at analyzing the 5xFAD Alzheimer’s disease mouse model in regard to male sexual function. The transgenes of this mouse model are regulated by Thy1 promoter activity and Thy1 is expressed in testes, e.g. by Sertoli cells. This allows speculation about an influence on sexual behavior. Methods: We analyzed morphological as well as biochemical properties of testicular tissue from 5xFAD mice and wild type littermates and testosterone levels in serum, testes and the brain. Sexual behavior was assessed by a urine scent marking test at different ages for both groups. Results: While sperm number, testes weight and morphological phenotypes of sperms were nearly indistinguishable from those of wild type littermates, testicular testosterone levels were significantly increased in the AD model mice. This was accompanied by elevated and prolonged sexual interest as displayed within the urine scent marking test. Conclusion: We suggest that overexpression of AβPP, which mostly is used to mimic AD in model mice, also affects male sexual behavior as assessed additional by the Urine Scent Marking (USM) test. The elevated testosterone levels might have an additional impact on central nervous system androgen receptors and also have to be considered when assessing learning and memory capabilities.


Sign in / Sign up

Export Citation Format

Share Document