The complete mitochondrial genome of the red-jointed brackish-water fiddler crab Minuca minax (LeConte 1855) (Brachyura: Ocypodidae): New family gene order, and purifying selection and phylogenetic informativeness of protein coding genes

Author(s):  
Isabelle Conrad ◽  
Abby Craft ◽  
Carl L. Thurman ◽  
J. Antonio Baeza
2018 ◽  
Author(s):  
Helen. E. Robertson ◽  
Philipp. H. Schiffer ◽  
Maximilian. J. Telford

AbstractThe Dicyemida and Orthonectida are two groups of tiny, simple, vermiform parasites that have historically been united in a group named the Mesozoa. Both Dicyemida and Orthonectida have just two cell layers and appear to lack any defined tissues. They were initially thought to be evolutionary intermediates between protozoans and metazoans but more recent analyses indicate that they are protostomian metazoans that have undergone secondary simplification from a complex ancestor. Here we describe the first almost complete mitochondrial genome sequence from an orthonectid, Intoshia linei, and describe nine and eight mitochondrial protein-coding genes from Dicyema sp. and Dicyema japonicum, respectively. The 14,247 base pair long I. linei sequence has typical metazoan gene content, but is exceptionally AT-rich, and has a divergent gene order compared to other metazoans. The data we present from the Dicyemida provide very limited support for the suggestion that dicyemid mitochondrial genes are found on discrete mini-circles, as opposed to the large circular mitochondrial genomes that are typical across the Metazoa. The cox1 gene from dicyemid species has a series of conserved in-frame deletions that is unique to this lineage. Using cox1 genes from across the genus Dicyema, we report the first internal phylogeny of this group.Key FindingsWe report the first almost-complete mitochondrial genome from an orthonectid parasite, Intoshia linei, including 12 protein-coding genes; 20 tRNAs and putative sequences for large and small subunit rRNAs. We find that the I. linei mitochondrial genome is exceptionally AT-rich and has a novel gene order compared to other published metazoan mitochondrial genomes. These findings are indicative of the rapid rate of evolution that has occurred in the I. linei mitochondrial genome.We also report nine and eight protein-coding genes, respectively, from the dicyemid species Dicyema sp. and Dicyema japonicum, and use the cox1 genes from both species for phylogenetic inference of the internal phylogeny of the dicyemids.We find that the cox1 gene from dicyemids has a series of four conserved in-frame deletions which appear to be unique to this group.


2018 ◽  
Vol 4 ◽  
Author(s):  
Helen E. Robertson ◽  
Philipp H. Schiffer ◽  
Maximilian J. Telford

Abstract The Dicyemida and Orthonectida are two groups of tiny, simple, vermiform parasites that have historically been united in a group named the Mesozoa. Both Dicyemida and Orthonectida have just two cell layers and appear to lack any defined tissues. They were initially thought to be evolutionary intermediates between protozoans and metazoans but more recent analyses indicate that they are protostomian metazoans that have undergone secondary simplification from a complex ancestor. Here we describe the first almost complete mitochondrial genome sequence from an orthonectid, Intoshia linei, and describe nine and eight mitochondrial protein-coding genes from Dicyema sp. and Dicyema japonicum, respectively. The 14 247 base pair long I. linei sequence has typical metazoan gene content, but is exceptionally AT-rich, and has a unique gene order. The data we have analysed from the Dicyemida provide very limited support for the suggestion that dicyemid mitochondrial genes are found on discrete mini-circles, as opposed to the large circular mitochondrial genomes that are typical of the Metazoa. The cox1 gene from dicyemid species has a series of conserved, in-frame deletions that is unique to this lineage. Using cox1 genes from across the genus Dicyema, we report the first internal phylogeny of this group.


2015 ◽  
Vol 63 (2) ◽  
pp. 111 ◽  
Author(s):  
Anna J. MacDonald ◽  
Theresa Knopp ◽  
Mitzy Pepper ◽  
J. Scott Keogh ◽  
Stephen D. Sarre

The Pygopodidae comprise an enigmatic group of legless lizards endemic to the Australo-Papuan region. Here we present the first complete mitochondrial genome for a member of this family, Aprasia parapulchella, from Australia. The mitochondrial genome of A. parapulchella is 16 528 base pairs long and contains 13 protein-coding genes, 22 tRNA genes, two rRNA genes and the control region, conforming to the typical vertebrate gene order. The overall mitochondrial nucleotide composition is 31.7% A, 24.5% T, 30.5% C and 13.2% G. This corresponds to a total A+T content of 56.3%, which is similar to that of other squamate lizard genomes.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 769
Author(s):  
Pattayampadam Ramakrishnan Shidhi ◽  
Vadakkemukadiyil Chellappan Biju ◽  
Sasi Anu ◽  
Chandrasekharan Laila Vipin ◽  
Kumar Raveendran Deelip ◽  
...  

Mitogenome sequencing provides an understanding of the evolutionary mechanism of mitogenome formation, mechanisms driving plant gene order, genome structure, and migration sequences. Data on the mitochondrial genome for family Convolvulaceae members is lacking. E. alsinoides, also known as shankhpushpi, is an important medicinal plant under the family Convolvulaceae, widely used in the Ayurvedic system of medicine. We identified the mitogenome of E. alsinoides using the Illumina mate-pair sequencing platform, and annotated using bioinformatics approaches in the present study. The mitogenome of E. alsinoides was 344184 bp in length and comprised 46 unique coding genes, including 31 protein-coding genes (PCGs), 12 tRNA genes, and 3 rRNA genes. The secondary structure of tRNAs shows that all the tRNAs can be folded into canonical clover-leaf secondary structures, except three trnW, trnG, and trnC. Measurement of the skewness of the nucleotide composition showed that the AT and GC skew is positive, indicating higher A’s and G’s in the mitogenome of E. alsinoides. The Ka/Ks ratios of 11 protein-coding genes (atp1, ccmC, cob, cox1, rps19, rps12, nad3, nad9, atp9, rpl5, nad4L) were <1, indicating that these genes were under purifying selection. Synteny and gene order analysis were performed to identify homologous genes among the related species. Synteny blocks representing nine genes (nad9, nad2, ccmFc, nad1, nad4, nad5, matR, cox1, nad7) were observed in all the species of Solanales. Gene order comparison showed that a high level of gene rearrangement has occurred among all the species of Solanales. The mitogenome data obtained in the present study could be used as the Convolvulaceae family representative for future studies, as there is no complex taxonomic history associated with this plant.


2018 ◽  
Vol 94 ◽  
Author(s):  
P. Zhang ◽  
R.K. Ran ◽  
A.Y. Abdullahi ◽  
X.L. Shi ◽  
Y. Huang ◽  
...  

AbstractDipetalonema gracile is a common parasite in squirrel monkeys (Saimiri sciureus), which can cause malnutrition and progressive wasting of the host, and lead to death in the case of massive infection. This study aimed to identify a suspected D. gracile worm from a dead squirrel monkey by means of molecular biology, and to amplify its complete mitochondrial genome by polymerase chain reaction (PCR) and sequence analysis. The results identified the worm as D. gracile, and the full length of its complete mitochondrial genome was 13,584 bp, which contained 22 tRNA genes, 12 protein-coding genes, two rRNA genes, one AT-rich region and one small non-coding region. The nucleotide composition included A (16.89%), G (20.19%), T (56.22%) and C (6.70%), among which A + T = 73.11%. The 12 protein-coding genes used TTG and ATT as start codons, and TAG and TAA as stop codons. Among the 22 tRNA genes, only trnS1AGN and trnS2UCN exhibited the TΨC-loop structure, while the other 20 tRNAs showed the TV-loop structure. The rrnL (986 bp) and rrnS (685 bp) genes were single-stranded and conserved in secondary structure. This study has enriched the mitochondrial gene database of Dipetalonema and laid a scientific basis for further study on classification, and genetic and evolutionary relationships of Dipetalonema nematodes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10364
Author(s):  
Natalia I. Abramson ◽  
Fedor N. Golenishchev ◽  
Semen Yu. Bodrov ◽  
Olga V. Bondareva ◽  
Evgeny A. Genelt-Yanovskiy ◽  
...  

In this article, we present the nearly complete mitochondrial genome of the Subalpine Kashmir vole Hyperacrius fertilis (Arvicolinae, Cricetidae, Rodentia), assembled using data from Illumina next-generation sequencing (NGS) of the DNA from a century-old museum specimen. De novo assembly consisted of 16,341 bp and included all mitogenome protein-coding genes as well as 12S and 16S RNAs, tRNAs and D-loop. Using the alignment of protein-coding genes of 14 previously published Arvicolini tribe mitogenomes, seven Clethrionomyini mitogenomes, and also Ondatra and Dicrostonyx outgroups, we conducted phylogenetic reconstructions based on a dataset of 13 protein-coding genes (PCGs) under maximum likelihood and Bayesian inference. Phylogenetic analyses robustly supported the phylogenetic position of this species within the tribe Arvicolini. Among the Arvicolini, Hyperacrius represents one of the early-diverged lineages. This result of phylogenetic analysis altered the conventional view on phylogenetic relatedness between Hyperacrius and Alticola and prompted the revision of morphological characters underlying the former assumption. Morphological analysis performed here confirmed molecular data and provided additional evidence for taxonomic replacement of the genus Hyperacrius from the tribe Clethrionomyini to the tribe Arvicolini.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242541
Author(s):  
Lvpei Du ◽  
Shanya Cai ◽  
Jun Liu ◽  
Ruoyu Liu ◽  
Haibin Zhang

Phymorhynchus is a genus of deep-sea snails that are most distributed in hydrothermal vent or cold seep environments. In this study, we presented the complete mitochondrial genome of P. buccinoides, a cold seep snail from the South China Sea. It is the first mitochondrial genome of a cold seep member of the superfamily Conoidea. The mitochondrial genome is 15,764 bp in length, and contains 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes. These genes are encoded on the positive strand, except for 8 tRNA genes that are encoded on the negative strand. The start codon ATG and 3 types of stop codons, TAA, TAG and the truncated termination codon T, are used in the 13 PCGs. All 13 PCGs in the 26 species of Conoidea share the same gene order, while several tRNA genes have been translocated. Phylogenetic analysis revealed that P. buccinoides clustered with Typhlosyrinx sp., Eubela sp., and Phymorhynchus sp., forming the Raphitomidae clade, with high support values. Positive selection analysis showed that a residue located in atp6 (18 S) was identified as the positively selected site with high posterior probabilities, suggesting potential adaption to the cold seep environment. Overall, our data will provide a useful resource on the evolutionary adaptation of cold seep snails for future studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Sun ◽  
Hua Huang ◽  
Yudong Liu ◽  
Shanshan Liu ◽  
Jun Xia ◽  
...  

AbstractIn this study, we analyzed the complete mitochondrial genome (mitogenome) of Speiredonia retorta, which is a pest and a member of the Lepidoptera order. In total, the S. retorta mitogenome was found to contain 15,652 base pairs encoding 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, as well as an adenine (A) + thymine (T)-rich region. These findings were consistent with the mitogenome composition of other lepidopterans, as we identified all 13 PCGs beginning at ATN codons. We also found that 11 PCGs terminated with canonical stop codons, whereas cox2 and nad4 exhibited incomplete termination codons. By analyzing the mitogenome of S. retorta using Bayesian inference (BI) and maximum likelihood (ML) models, we were able to further confirm that this species is a member of the Erebidae family.


Parasitology ◽  
2006 ◽  
Vol 134 (5) ◽  
pp. 749-759 ◽  
Author(s):  
J.-K. PARK ◽  
K.-H. KIM ◽  
S. KANG ◽  
H. K. JEON ◽  
J.-H. KIM ◽  
...  

SUMMARYThe complete nucleotide sequence of the mitochondrial genome was determined for the fish tapeworm Diphyllobothrium latum. This genome is 13 608 bp in length and encodes 12 protein-coding genes (but lacks the atp8), 22 transfer RNA (tRNA) and 2 ribosomal RNA (rRNA) genes, corresponding to the gene complement found thus far in other flatworm mitochondrial (mt) DNAs. The gene arrangement of this pseudophyllidean cestode is the same as the 6 cyclophyllidean cestodes characterized to date, with only minor variation in structure among these other genomes; the relative position of trnS2 and trnL1 is switched in Hymenolepis diminuta. Phylogenetic analyses of the concatenated amino acid sequences for 12 protein-coding genes of all complete cestode mtDNAs confirmed taxonomic and previous phylogenetic assessments, with D. latum being a sister taxon to the cyclophyllideans. High nodal support and phylogenetic congruence between different methods suggest that mt genomes may be of utility in resolving ordinal relationships within the cestodes. All species of Diphyllobothrium infect fish-eating vertebrates, and D. latum commonly infects humans through the ingestion of raw, poorly cooked or pickled fish. The complete mitochondrial genome provides a wealth of genetic markers which could be useful for identifying different life-cycle stages and for investigating their population genetics, ecology and epidemiology.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6866 ◽  
Author(s):  
Gengyun Niu ◽  
Yaoyao Zhang ◽  
Zhenyi Li ◽  
Meicai Wei

A new genus with a new species of the tribe Hoplocampini of Hoplocampinae was described from China: Analcellicampa xanthosoma Wei & Niu, gen. et sp. nov. Hoplocampa danfengensis G. Xiao 1994 was designated as the type species of the new genus. The characters of Analcellicampa danfengensis (G. Xiao) comb. nov. were briefly discussed. A key to the tribes and known genera of Hoplocampinae was provided. The nearly complete mitochondrial genome of A. xanthosoma was characterized as having a length of 15,512 bp and containing 37 genes (22 tRNAs, 13 protein-coding genes (PCGs), and 2 rRNAs). The gene order of this new specimen was the same as that in the inferred insect ancestral mitochondrial genome. All PCGs were initiated by ATN codons and ended with TAA or T stop codons. All tRNAs had a typical cloverleaf secondary structure, except for trnS1. Remarkably, the helices H991 of rrnS and H47 of rrnL were redundant, while helix H563 of rrnL was highly conserved. A phylogeny based on previously reported symphytan mitochondrial genomes showed that A. xanthosoma is a sister group to Monocellicampa pruni, with high support values. We suggest that A. xanthosoma and M. pruni belong to the tribe Hoplocampini of Hoplocampinae.


Sign in / Sign up

Export Citation Format

Share Document