Genome assembly, sex-biased gene expression and dosage compensation in the damselfly Ischnura elegans

Genomics ◽  
2021 ◽  
Author(s):  
Pallavi Chauhan ◽  
Janne Swaegers ◽  
Rosa Ana Sanchez Guillen ◽  
Erik I. Svensson ◽  
Maren Wellenreuther ◽  
...  
Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1167-1181
Author(s):  
Pei-Wen Chiang ◽  
David M Kurnit

Abstract Using a sensitive RT-QPCR assay, we analyzed the regulatory effects of sex and different dosage compensation mutations in Drosophila. To validate the assay, we showed that regulation for several genes indeed varied with the number of functional copies of that gene. We then confirmed that dosage compensation occurred for most genes we examined in male and female flies. Finally, we examined the effects on regulation of several genes in the MSL pathway, presumed to be involved in sex-dependent determination of regulation. Rather than seeing global alterations of either X chromosomal or autosomal genes, regulation of genes on either the X chromosome or the autosomes could be elevated, depressed, or unaltered between sexes in unpredictable ways for the various MSL mutations. Relative dosage for a given gene between the sexes could vary at different developmental times. Autosomal genes often showed deranged regulatory levels, indicating they were in pathways perturbed by X chromosomal changes. As exemplified by the BR-C locus and its dependent Sgs genes, multiple genes in a given pathway could exhibit coordinate regulatory modulation. The variegated pattern shown for expression of both X chromosomal and autosomal loci underscores the complexity of gene expression so that the phenotype of MSL mutations does not reflect only simple perturbations of genes on the X chromosome.


2014 ◽  
Vol 6 (3) ◽  
pp. 526-537 ◽  
Author(s):  
Gilbert Smith ◽  
Yun-Ru Chen ◽  
Gary W. Blissard ◽  
Adriana D. Briscoe

Epigenomics ◽  
2019 ◽  
Vol 11 (16) ◽  
pp. 1827-1837 ◽  
Author(s):  
Shihoko Kojima ◽  
Daniela Cimini

Aneuploidy (i.e., abnormal chromosome number) is the leading cause of miscarriage and congenital defects in humans. Moreover, aneuploidy is ubiquitous in cancer. The deleterious phenotypes associated with aneuploidy are likely a result of the imbalance in the levels of gene products derived from the additional chromosome(s). Here, we summarize the current knowledge on how the presence of extra chromosomes impacts gene expression. We describe studies that have found a strict correlation between gene dosage and transcript levels as wells as studies that have found a less stringent correlation, hinting at the possible existence of dosage compensation mechanisms. We conclude by peering into the epigenetic changes found in aneuploid cells and outlining current knowledge gaps and potential areas of future investigation.


DNA Research ◽  
2019 ◽  
Vol 26 (6) ◽  
pp. 485-494 ◽  
Author(s):  
Li Ren ◽  
Xiaojing Yan ◽  
Liu Cao ◽  
Jiaming Li ◽  
Xueyin Zhang ◽  
...  

Abstract Hybridization and polyploidy are pervasive evolutionary features of flowering plants and frequent among some animal groups, such as fish. These processes always lead to novel genotypes and various phenotypes, including growth heterosis. However, its genetic basis in lower vertebrate is still poorly understood. Here, we conducted transcriptome-level analyses of the allopolyploid complex of Carassius auratus red var. (R) (♀) × Cyprinus carpio L. (C) (♂), including the allodiploid and allotetraploid with symmetric subgenomes, and the two allotriploids with asymmetric subgenomes. The gradual changes of gene silencing and novel gene expression suggested the weakening of the constraint of polymorphic expression in genotypic changes. Then, analyses of the direction and magnitude of homoeolog expression exhibited various asymmetric expression patterns, which supported that R incomplete dominance and dosage compensation were co-regulated in the two triploids. Under these effects, various magnitudes of R-homoeolog expression bias were observed in growth-regulated genes, suggesting that they might contribute to growth heterosis in the two triploids. The determination of R incomplete dominance and dosage compensation, which might be led by asymmetric subgenomes and multiple sets of homologous chromosomes, explained why various expression patterns were shaped and their potential contribution to growth heterosis in the two triploids.


2006 ◽  
Vol 18 (2) ◽  
pp. 140
Author(s):  
M. Nino-Soto ◽  
G. Mastromonaco ◽  
P. Blondin ◽  
W. A. King

Expression of some X-chromosome linked genes has recently been shown to be altered in bovine somatic cell nuclear transfer (SCNT) derived embryos (Wrenzycki et al. 2002 Biol. Reprod. 66, 127), implying that the regulatory mechanisms of X-linked transcription are affected by embryo in vitro production (IVP) methods. We analyzed the transcriptional pattern of X-linked genes (BIRC4, GAB3, HPRT1, MECP2, RPS4X, SLC25A6, and XIST) in bovine in vitro fertilized (IVF) and SCNT male and female blastocysts to determine X-inactivation status and changes resulting from IVP. We collected pools of male (n = 5 pools) and female (n = 3 pools) IVF-derived blastocysts (Bousquet et al. 1999 Theriogenology 51, 59) and male (n = 5 pools) and female (n = 3 pools) SCNT-derived blastocysts (Mastromonaco et al. 2004 Reprod. Domest. Anim. 39, 462). Each pool consisted of five blastocysts. Embryos were washed in phosphate buffered saline (PBS) + 0.1% polyvinyl alcohol (PVA), collected, and stored at -80�C. Total RNA was extracted with an Absolutely RNA Microprep kit (Stratagene, La Jolla, CA, USA), DNase I treated, and precipitated with isopropanol and linear acrylamide (Ambion, Inc., Austin, TX, USA) as a carrier. Reverse transcription was performed with Oligo-dT (Invitrogen, Burlington, Ontario, Canada) and Superscript II RT (Invitrogen). Transcript quantification was performed by quantitative real-time PCR using SYBR Green I (LightCycler system, Roche, Diagnostics, Laval, Quebec, Canada). Data analysis was performed with SAS (SAS Institute, Inc., Cary, SC, USA) using a mixed-model factorial ANOVA and with results presented as estimates of the median, ratios of estimates, and 95% confidence intervals with � = 0.05. IVF-derived male and female blastocysts possessed similar levels of the transcripts analyzed, suggesting successful dosage compensation at this developmental stage for embryos fertilized in vitro. XIST was not detected in male IVF embryos. GAB3 was not detected in any of the female groups and, in addition, HPRT1 transcripts were not detected in SCNT derived female embryos. Male and female SCNT-derived blastocysts possessed marked differences in their transcript levels, with males showing statistically significantly higher levels of BIRC4 and RPS4X and females possessing higher levels of MECP2 and SLC25A6 transcripts although differences between the latter two were not statistically significant. XIST was detected in both male and female SCNT blastocysts. We conclude that dosage compensation between male and female IVF blastocysts is achieved at this developmental stage for the transcripts examined. However, this pattern was markedly changed in the SCNT group, affecting especially female SCNT blastocysts, suggesting that the regulatory mechanisms of X-inactivation and X-linked gene expression are substantially altered in SCNT embryos probably due to aberrant epigenetic patterns and faulty genome reprogramming. We are currently analyzing X-linked transcription in male and female in vivo-derived blastocysts in order to compare this group with IVP-derived embryos. This work was funded by NSERC, CIHR, and CRC.


2019 ◽  
Vol 11 (4) ◽  
pp. 1033-1044 ◽  
Author(s):  
Ann Kathrin Huylmans ◽  
Melissa A Toups ◽  
Ariana Macon ◽  
William J Gammerdinger ◽  
Beatriz Vicoso

2018 ◽  
Vol 9 (1) ◽  
pp. 305-314 ◽  
Author(s):  
Jingyue (Ellie) Duan ◽  
Kaleigh Flock ◽  
Nathanial Jue ◽  
Mingyuan Zhang ◽  
Amanda Jones ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Michael B. Wells ◽  
Györgyi Csankovszki ◽  
Laura M. Custer

Dosage compensation balances gene expression levels between the sex chromosomes and autosomes and sex-chromosome-linked gene expression levels between the sexes. Different dosage compensation strategies evolved in different lineages, but all involve changes in chromatin. This paper discusses our current understanding of how modifications of the histone H4 tail, particularly changes in levels of H4 lysine 16 acetylation and H4 lysine 20 methylation, can be used in different contexts to either modulate gene expression levels twofold or to completely inhibit transcription.


2007 ◽  
Vol 27 (24) ◽  
pp. 8760-8769 ◽  
Author(s):  
Kathleen A. Worringer ◽  
Barbara Panning

ABSTRACT In organisms with sex chromosomes, dosage compensation equalizes gene expression between the sexes. In Drosophila melanogaster males, the male-specific lethal (MSL) complex of proteins and two noncoding roX RNAs coat the X chromosome, resulting in a twofold transcriptional upregulation to equalize gene expression with that of females. How MSL complex enrichment on the X chromosome is regulated is not well understood. We performed an RNA interference screen to identify new factors required for dosage compensation. Using a Drosophila Schneider S2 cell line in which green fluorescent protein (GFP)-tagged MSL2 localizes to the X chromosome, we assayed ∼7,200 knockdowns for their effects on GFP-MSL2 distribution. One factor identified is the zinc finger protein Zn72D. In its absence, the MSL complex no longer coats the X chromosome. We demonstrate that Zn72D is required for productive splicing of the transcript for the MSL protein Maleless, explaining the dosage compensation defect. However, Zn72D is required for the viability of both sexes, indicating its functions are not sex specific. Consistent with this, Zn72D colocalizes with elongating RNA polymerase II, implicating it as a more general factor involved in RNA metabolism.


Sign in / Sign up

Export Citation Format

Share Document