Heterologous expression of Escherichia coli ppsA (phosphoenolpyruvate synthetase) and galU (UDP-glucose pyrophosphorylase) genes in Corynebacterium glutamicum, and its impact on trehalose synthesis

2005 ◽  
Vol 7 (4) ◽  
pp. 260-268 ◽  
Author(s):  
Leandro Padilla ◽  
Eduardo Agosin
2004 ◽  
Vol 70 (7) ◽  
pp. 3845-3854 ◽  
Author(s):  
Leandro Padilla ◽  
Susanne Morbach ◽  
Reinhard Krämer ◽  
Eduardo Agosin

ABSTRACT Trehalose is a disaccharide with a wide range of applications in the food industry. We recently proposed a strategy for trehalose production based on improved strains of the gram-positive bacterium Corynebacterium glutamicum. This microorganism synthesizes trehalose through two major pathways, OtsBA and TreYZ, by using UDP-glucose and ADP-glucose, respectively, as the glucosyl donors. In this paper we describe improvement of the UDP-glucose supply through heterologous expression in C. glutamicum of the UDP-glucose pyrophosphorylase gene from Escherichia coli, either expressed alone or coexpressed with the E. coli ots genes (galU otsBA synthetic operon). The impact of such expression on trehalose accumulation and excretion, glycogen accumulation, and the growth pattern of new recombinant strains is described. Expression of the galU otsBA synthetic operon resulted in a sixfold increase in the accumulated and excreted trehalose relative to that in a wild-type strain. Surprisingly, single expression of galU also resulted in an increase in the accumulated trehalose. This increase in trehalose synthesis was abolished upon deletion of the TreYZ pathway. These results proved that UDP-glucose has an important role not only in the OtsBA pathway but also in the TreYZ pathway.


2004 ◽  
Vol 70 (1) ◽  
pp. 370-376 ◽  
Author(s):  
Leandro Padilla ◽  
Reinhard Krämer ◽  
Gregory Stephanopoulos ◽  
Eduardo Agosin

ABSTRACT Trehalose is a disaccharide with potential applications in the biotechnology and food industries. We propose a method for industrial production of trehalose, based on improved strains of Corynebacterium glutamicum. This paper describes the heterologous expression of Escherichia coli trehalose-synthesizing enzymes trehalose-6-phosphate synthase (OtsA) and trehalose-6-phosphate phosphatase (OtsB) in C. glutamicum, as well as its impact on the trehalose biosynthetic rate and metabolic-flux distributions, during growth in a defined culture medium. The new recombinant strain showed a five- to sixfold increase in the activity of OtsAB pathway enzymes, compared to a control strain, as well as an almost fourfold increase in the trehalose excretion rate during the exponential growth phase and a twofold increase in the final titer of trehalose. The heterologous expression described resulted in a reduced specific glucose uptake rate and Krebs cycle flux, as well as reduced pentose pathway flux, a consequence of downregulated glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. The results proved the suitability of using the heterologous expression of Ots proteins in C. glutamicum to increase the trehalose biosynthetic rate and yield and suggest critical points for further improvement of trehalose overproduction in C. glutamicum.


2012 ◽  
Vol 78 (20) ◽  
pp. 7407-7413 ◽  
Author(s):  
Qian Zhang ◽  
Tao Yan

ABSTRACTNaturalized soilEscherichia colipopulations need to resist common soil desiccation stress in order to inhabit soil environments. In this study, four representative soilE. colistrains and one lab strain, MG1655, were tested for desiccation resistance via die-off experiments in sterile quartz sand under a potassium acetate-induced desiccation condition. The desiccation stress caused significantly lower die-off rates of the four soil strains (0.17 to 0.40 day−1) than that of MG1655 (0.85 day−1). Cellular responses, including extracellular polymeric substance (EPS) production, exogenous glycine betaine (GB) uptake, and intracellular compatible organic solute synthesis, were quantified and compared under the desiccation and hydrated control conditions. GB uptake appeared not to be a specific desiccation response, while EPS production showed considerable variability among theE. colistrains. AllE. colistrains produced more intracellular trehalose, proline, and glutamine under the desiccation condition than the hydrated control, and only the trehalose concentration exhibited a significant correlation with the desiccation-contributed die-off coefficients (Spearman's ρ = −1.0;P= 0.02).De novotrehalose synthesis was further determined for 15E. colistrains from both soil and nonsoil sources to determine its prevalence as a specific desiccation response. MostE. colistrains (14/15) synthesized significantly more trehalose under the desiccation condition, and the soilE. colistrains produced more trehalose (106.5 ± 44.9 μmol/mg of protein [mean ± standard deviation]) than the nonsoil reference strains (32.5 ± 10.5 μmol/mg of protein).


2008 ◽  
Vol 136 ◽  
pp. S300 ◽  
Author(s):  
Jin-Oh Baek ◽  
Jeong-Woo Seo ◽  
Ohsuk Kwon ◽  
Su-Il Seong ◽  
Ik-Hwan Kim ◽  
...  

2020 ◽  
Vol 128 (5) ◽  
pp. 1390-1399
Author(s):  
C.‐L. Liu ◽  
H.‐G. Dong ◽  
K. Xue ◽  
W. Yang ◽  
P. Liu ◽  
...  

1984 ◽  
Vol 196 (1) ◽  
pp. 175-178 ◽  
Author(s):  
Akio Ozaki ◽  
Ryoichi Katsumata ◽  
Tetsuo Oka ◽  
Akira Furuya

Sign in / Sign up

Export Citation Format

Share Document