Heterologous expression and characterization of l-amino acid deaminases from Proteus mirabilis in Escherichia coli

2008 ◽  
Vol 136 ◽  
pp. S300 ◽  
Author(s):  
Jin-Oh Baek ◽  
Jeong-Woo Seo ◽  
Ohsuk Kwon ◽  
Su-Il Seong ◽  
Ik-Hwan Kim ◽  
...  
2003 ◽  
Vol 47 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Thierry Naas ◽  
Marie Zerbib ◽  
Delphine Girlich ◽  
Patrice Nordmann

ABSTRACT Proteus mirabilis NEL-1 was isolated from a urine sample of a patient hospitalized in a long-term care facility. Strain NEL-1 produced a β-lactamase with a pI of 5.2 conferring resistance to amoxicillin and amoxicillin-clavulanic acid. Sequencing of a PCR amplicon by using TEM-specific primers revealed a novel bla TEM gene, bla TEM-67. TEM-67 was an IRT-1-like TEM derivative related to TEM-65 (Lys39, Cys244) with an additional Leu21Ile amino acid substitution in the leader peptide. The biochemical properties of TEM-67 were equivalent to those described for TEM-65. Analysis of sequences surrounding bla TEM-67 revealed that it was located on a transposon, Tn1, which itself was located on a 48-kb non-self-transferable plasmid, pANG-1. Electroporation of plasmid pANG-1 into Escherichia coli DH10B resulted in the integration of bla TEM-67 into the chromosome, whereas it remained episomal in the P. mirabilis CIP103181 reference strain. Further characterization of pANG-1 revealed the presence of two identical sequences on both sides of Tn1 that contained an IS26 insertion sequence followed by a novel colicin gene, colZ, which had 20% amino acid identity with other colicin genes. The characterization of this novel TEM derivative provides further evidence for the large diversity of plasmid-encoded β-lactamases produced in P. mirabilis and for their spread to other enterobacterial species through transposable-element-mediated events.


2011 ◽  
Vol 51 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Jin-Oh Baek ◽  
Jeong-Woo Seo ◽  
Ohsuk Kwon ◽  
Su-Il Seong ◽  
Ik-Hwan Kim ◽  
...  

1997 ◽  
Vol 41 (2) ◽  
pp. 314-318 ◽  
Author(s):  
E Hannecart-Pokorni ◽  
F Depuydt ◽  
L de wit ◽  
E van Bossuyt ◽  
J Content ◽  
...  

The amikacin resistance gene aac(6')-Im [corrected] from Citrobacter freundii Cf155 encoding an aminoglycoside 6'-N-acetyltransferase was characterized. The gene was identified as a coding sequence of 521 bp located down-stream from the 5' conserved segment of an integron. The sequence of this aac(6')-Im [corrected] gene corresponded to a protein of 173 amino acids which possessed 64.2% identity in a 165-amino-acid overlap with the aac(6')-Ia gene product (F.C. Tenover, D. Filpula, K.L. Phillips, and J. J. Plorde, J. Bacteriol. 170:471-473, 1988). By using PCR, the aac(6')-Im [corrected] gene could be detected in 8 of 86 gram-negative clinical isolates from two Belgian hospitals, including isolates of Citrobacter, Klebsiella spp., and Escherichia coli. PCR mapping of the aac(6')-Im [corrected] gene environment in these isolates indicated that the gene was located within a sulI-type integron; the insert region is 1,700 bases long and includes two genes cassettes, the second being ant (3")-Ib.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 215
Author(s):  
Dan-Ping Zhang ◽  
Xiao-Ran Jing ◽  
An-Wen Fan ◽  
Huan Liu ◽  
Yao Nie ◽  
...  

L-amino acid deaminases (LAADs) are membrane flavoenzymes that catalyze the deamination of neutral and aromatic L-amino acids to α-keto acids and ammonia. LAADs can be used to develop many important biotechnological applications. However, the transmembrane α-helix of LAADs restricts its soluble active expression and purification from a heterologous host, such as Escherichia coli. Herein, through fusion with the maltose-binding protein (MBP) tag, the recombinant E. coli BL21 (DE3)/pET-21b-MBP-PmLAAD was constructed and the LAAD from Proteus mirabilis (PmLAAD) was actively expressed as a soluble protein. After purification, the purified MBP-PmLAAD was obtained. Then, the catalytic activity of the MBP-PmLAAD fusion protein was determined and compared with the non-fused PmLAAD. After fusion with the MBP-tag, the catalytic efficiency of the MBP-PmLAAD cell lysate was much higher than that of the membrane-bound PmLAAD whole cells. The soluble MBP-PmLAAD cell lysate catalyzed the conversion of 100 mM L-phenylalanine (L-Phe) to phenylpyruvic acid (PPA) with a 100% yield in 6 h. Therefore, the fusion of the MBP-tag not only improved the soluble expression of the PmLAAD membrane-bound protein, but also increased its catalytic performance.


1985 ◽  
Vol 40 (5-6) ◽  
pp. 415-420 ◽  
Author(s):  
Gerhard Gruner ◽  
Monier H. Tadros ◽  
Roland Plapp

Abstract [14C]penicillin binding experiments and membrane analysis were carried out with cell envelope preparations from Escherichia coli and Proteus mirabilis. After incubation with [14C] penicillin G labeled free lipoprotein could be identified. The analysis of the isolated lipoprotein by SDS polyacrylamide gel electrophoresis indicates that there is only one protein with an apparent molecular weight of 7000. The amino acid composition of isolated labeled free lipoprotein from E. coli was identical to the lipoprotein already found in E. coli. It is a point of interest that the amino acid composition of the isolated labeled free lipoprotein from P. mirabilis D52 differs from that found in other mutants of this strain. The free form of lipoprotein from P. mirabilis D52 is composed of 61 amino acids and has glycine, phenylalanine and proline as specific components.


2001 ◽  
Vol 67 (4) ◽  
pp. 1601-1606 ◽  
Author(s):  
Mitsunori Ishiguro ◽  
Satoshi Kaneko ◽  
Atsushi Kuno ◽  
Yoshinori Koyama ◽  
Shigeki Yoshida ◽  
...  

ABSTRACT The nucleotide sequence of the Thermus sp. strain T2 DNA coding for a thermostable α-galactosidase was determined. The deduced amino acid sequence of the enzyme predicts a polypeptide of 474 amino acids (M r, 53,514). The observed homology between the deduced amino acid sequences of the enzyme and α-galactosidase from Thermus brockianus was over 70%.Thermus sp. strain T2 α-galactosidase was expressed in its active form in Escherichia coli and purified. Native polyacrylamide gel electrophoresis and gel filtration chromatography data suggest that the enzyme is octameric. The enzyme was most active at 75°C forp-nitrophenyl-α-d-galactopyranoside hydrolysis, and it retained 50% of its initial activity after 1 h of incubation at 70°C. The enzyme was extremely stable over a broad range of pH (pH 6 to 13) after treatment at 40°C for 1 h. The enzyme acted on the terminal α-galactosyl residue, not on the side chain residue, of the galactomanno-oligosaccharides as well as those of yeasts and Mortierella vinacea α-galactosidase I. The enzyme has only one Cys residue in the molecule.para-Chloromercuribenzoic acid completely inhibited the enzyme but did not affect the mutant enzyme which contained Ala instead of Cys, indicating that this Cys residue is not responsible for its catalytic function.


Sign in / Sign up

Export Citation Format

Share Document