Measurement of psychosine in dried blood spots: a potential improvement of newborn screening for Krabbe disease

2014 ◽  
Vol 111 (2) ◽  
pp. S75
Author(s):  
Dietrich Matern ◽  
Coleman C. Turgeon ◽  
Joseph J. Orsini ◽  
Karen A. Sanders ◽  
Jennifer L. Hesemann ◽  
...  
2013 ◽  
Vol 419 ◽  
pp. 73-76 ◽  
Author(s):  
Wei-Lien Chuang ◽  
Josh Pacheco ◽  
X. Kate Zhang ◽  
Monica M. Martin ◽  
Chad K. Biski ◽  
...  

2015 ◽  
Vol 38 (5) ◽  
pp. 923-929 ◽  
Author(s):  
Coleman T. Turgeon ◽  
Joseph J. Orsini ◽  
Karen A. Sanders ◽  
Mark J. Magera ◽  
Thomas J. Langan ◽  
...  

2018 ◽  
Vol 21 (7) ◽  
pp. 1644-1651 ◽  
Author(s):  
Thomas J. Langan ◽  
Joseph J. Orsini ◽  
Kabir Jalal ◽  
Amy L. Barczykowski ◽  
Maria L. Escolar ◽  
...  

2004 ◽  
Vol 50 (10) ◽  
pp. 1785-1796 ◽  
Author(s):  
Yijun Li ◽  
C Ronald Scott ◽  
Nestor A Chamoles ◽  
Ahmad Ghavami ◽  
B Mario Pinto ◽  
...  

Abstract Background: Newborn screening for deficiency in the lysosomal enzymes that cause Fabry, Gaucher, Krabbe, Niemann–Pick A/B, and Pompe diseases is warranted because treatment for these syndromes is now available or anticipated in the near feature. We describe a multiplex screening method for all five lysosomal enzymes that uses newborn-screening cards containing dried blood spots as the enzyme source. Methods: We used a cassette of substrates and internal standards to directly quantify the enzymatic activities, and tandem mass spectrometry for enzymatic product detection. Rehydrated dried blood spots were incubated with the enzyme substrates. We used liquid-liquid extraction followed by solid-phase extraction with silica gel to remove buffer components. Acarbose served as inhibitor of an interfering acid α-glucosidase present in neutrophils, which allowed the lysosomal enzyme implicated in Pompe disease to be selectively analyzed. Results: We analyzed dried blood spots from 5 patients with Gaucher, 5 with Niemann–Pick A/B, 11 with Pompe, 5 with Fabry, and 12 with Krabbe disease, and in all cases the enzyme activities were below the minimum activities measured in a collection of heterozygous carriers and healthy noncarrier individuals. The enzyme activities measured in 5–9 heterozygous carriers were approximately one-half those measured with 15–32 healthy individuals, but there was partial overlap of each condition between the data sets for carriers and healthy individuals. Conclusion: For all five diseases, the affected individuals were detected. The assay can be readily automated, and the anticipated reagent and supply costs are well within the budget limits of newborn-screening centers.


2021 ◽  
Vol 26 ◽  
pp. 100720
Author(s):  
Archana Natarajan ◽  
Rita Christopher ◽  
Shruti V. Palakuzhiyil ◽  
Sadanandavalli Retnaswami Chandra

2008 ◽  
Vol 54 (3) ◽  
pp. 542-549 ◽  
Author(s):  
Devin Oglesbee ◽  
Karen A Sanders ◽  
Jean M Lacey ◽  
Mark J Magera ◽  
Bruno Casetta ◽  
...  

Abstract Background: Newborn screening for maple syrup urine disease (MSUD) relies on finding increased concentrations of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine by tandem mass spectrometry (MS/MS). d-Alloisoleucine (allo-Ile) is the only pathognomonic marker of MSUD, but it cannot be identified by existing screening methods because it is not differentiated from isobaric amino acids. Furthermore, newborns receiving total parenteral nutrition often have increased concentrations of BCAAs. To improve the specificity of newborn screening for MSUD and to reduce the number of diet-related false-positive results, we developed a LC-MS/MS method for quantifying allo-Ile. Methods: Allo-Ile and other BCAAs were extracted from a 3/16-inch dried blood spot punch with methanol/H2O, dried under nitrogen, and reconstituted into mobile phase. Quantitative LC-MS/MS analysis of allo-Ile, its isomers, and isotopically labeled internal standards was achieved within 15 min. To determine a reference interval for BCAAs including allo-Ile, we analyzed 541 dried blood spots. We also measured allo-Ile in blinded samples from 16 MSUD patients and 21 controls and compared results to an HPLC method. Results: Intra- and interassay imprecision (mean CVs) for allo-Ile, leucine, isoleucine, and valine ranged from 1.8% to 7.4%, and recovery ranged from 91% to 129%. All 16 MSUD patients were correctly identified. Conclusions: The LC-MS/MS method can reliably measure allo-Ile in dried blood spots for the diagnosis of MSUD. Applied to newborn screening as a second-tier test, it will reduce false-positive results, which produce family anxiety and increase follow-up costs. The assay also appears suitable for use in monitoring treatment of MSUD patients.


2014 ◽  
Vol 111 (2) ◽  
pp. S79
Author(s):  
Ken Momosaki ◽  
Shirou Matsumoto ◽  
Kimitoshi Nakamura ◽  
Hiroshi Mitsubuchi ◽  
Toshika Okumiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document