Non-clinical evaluation of a blood-brain barrier-penetrable N-sulfoglucosamine sulfohydrolase in a mouse model of mucopolysaccharidosis type IIIA

2021 ◽  
Vol 132 (2) ◽  
pp. S105-S106
Author(s):  
Satowa Tanaka ◽  
Sachiho Kida ◽  
Yuri Koshimura ◽  
Shinji Kakimoto ◽  
Atsushi Imakiire ◽  
...  
2018 ◽  
Vol 123 (2) ◽  
pp. S134
Author(s):  
Hiroyuki Sonoda ◽  
Hideto Morimoto ◽  
Eiji Yoden ◽  
Yuri Koshimura ◽  
Masafumi Kinoshita ◽  
...  

2019 ◽  
Vol 126 (2) ◽  
pp. S83-S84
Author(s):  
Sachiho Kida ◽  
Masafumi Kinoshita ◽  
Satowa Tanaka ◽  
Miho Okumura ◽  
Yuri Koshimura ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1231
Author(s):  
Ihab M. Abdallah ◽  
Kamal M. Al-Shami ◽  
Euitaek Yang ◽  
Amal Kaddoumi

In Alzheimer’s disease (AD), several studies have reported blood-brain barrier (BBB) breakdown with compromised function. P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are transport proteins localized at the BBB luminal membrane and play an important role in the clearance of amyloid-β (Aβ). The purpose of this study was to investigate the effect of pharmacological inhibition of Aβ efflux transporters on BBB function and Aβ accumulation and related pathology. Recently, we have developed an in vitro high-throughput screening assay to screen for compounds that modulate the integrity of a cell-based BBB model, which identified elacridar as a disruptor of the monolayer integrity. Elacridar, an investigational compound known for its P-gp and BCRP inhibitory effect and widely used in cancer research. Therefore, it was used as a model compound for further evaluation in a mouse model of AD, namely TgSwDI. TgSwDI mouse is also used as a model for cerebral amyloid angiopathy (CAA). Results showed that P-gp and BCRP inhibition by elacridar disrupted the BBB integrity as measured by increased IgG extravasation and reduced expression of tight junction proteins, increased amyloid deposition due to P-gp, and BCRP downregulation and receptor for advanced glycation end products (RAGE) upregulation, increased CAA and astrogliosis. Further studies revealed the effect was mediated by activation of NF-κB pathway. In conclusion, results suggest that BBB disruption by inhibiting P-gp and BCRP exacerbates AD pathology in a mouse model of AD, and indicate that therapeutic drugs that inhibit P-gp and BCRP could increase the risk for AD.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 909
Author(s):  
Yurii A. Zolotarev ◽  
Vladimir A. Mitkevich ◽  
Stanislav I. Shram ◽  
Alexei A. Adzhubei ◽  
Anna P. Tolstova ◽  
...  

One of the treatment strategies for Alzheimer’s disease (AD) is based on the use of pharmacological agents capable of binding to beta-amyloid (Aβ) and blocking its aggregation in the brain. Previously, we found that intravenous administration of the synthetic tetrapeptide Acetyl-His-Ala-Glu-Glu-Amide (HAEE), which is an analogue of the 35–38 region of the α4 subunit of α4β2 nicotinic acetylcholine receptor and specifically binds to the 11–14 site of Aβ, reduced the development of cerebral amyloidogenesis in a mouse model of AD. In the current study on three types of laboratory animals, we determined the biodistribution and tissue localization patterns of HAEE peptide after single intravenous bolus administration. The pharmacokinetic parameters of HAEE were established using uniformly tritium-labeled HAEE. Pharmacokinetic data provided evidence that HAEE goes through the blood–brain barrier. Based on molecular modeling, a role of LRP1 in receptor-mediated transcytosis of HAEE was proposed. Altogether, the results obtained indicate that the anti-amyloid effect of HAEE, previously found in a mouse model of AD, most likely occurs due to its interaction with Aβ species directly in the brain.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Wei Ling Lau ◽  
Mary Tarbiat-Boldaji ◽  
Hayley Smalls ◽  
Ane Nunes ◽  
Javad Savoj ◽  
...  

Introduction: Cerebral microbleeds are more common in chronic kidney disease (CKD) and dialysis patients compared to the general population. Diminished kidney function alone appears to be a risk factor for microbleeds, independent of age and hypertension. Microbleed burden in CKD patients is associated with increased risk of future hemorrhagic stroke and with cognitive dysfunction. The mechanisms that drive uremic microbleed formation are unclear. Hypothesis: We hypothesized that CKD mice are predisposed to develop cerebral microhemorrhages (the pathologic substrate of microbleeds), and that a standardized inflammatory stimulus (lipopolysaccharide, LPS) will amplify microhemorrhage burden in CKD mice compared to non-CKD controls (CTL). We also hypothesized that uremia induces depletion of tight junction proteins, altering blood-brain barrier integrity and representing a potential mechanism of microbleed formation. Methods: Animal groups included CTL (n=3), CKD (n=3), CTL+LPS (n=5) and CKD+LPS (n=5). CKD induction in male C57BL/6 mice was achieved via nephrotoxic adenine diet x18 days. Two weeks following CKD induction, CKD and control mice were treated with LPS 1 mg/kg i.p. dosed at 0, 6 and 24 hours. Brains were harvested one week after LPS injections and 40-micron sections were stained using Prussian blue to identify microhemorrhages. Immunohistochemistry was performed for the blood-brain barrier tight junction protein claudin-5. Results: CKD mice had significantly elevated blood urea nitrogen, and tubulointerstitial fibrosis was present on kidney histology. Total number of microhemorrhages per brain was 2.3±1.5 (mean ± standard error of the mean) for CTL mice, 8.3±1.5 for CKD mice, 23.2±4.2 for CTL+LPS mice, and 27.6±6.2 for CKD+LPS mice (p<0.05 for CKD+LPS vs. CTL). Immunostaining showed decreased claudin-5 expression in CKD mice compared to CTL. Conclusions: We have generated a mouse model that will facilitate future mechanistic studies in the field of uremic microbleeds. Our initial findings suggest that CKD alters blood-brain barrier integrity and that inflammation amplifies development of microbleeds in CKD.


2016 ◽  
Vol 33 (13) ◽  
pp. 1202-1211 ◽  
Author(s):  
Christopher D. Hue ◽  
Frances S. Cho ◽  
Siqi Cao ◽  
Russell E. Nicholls ◽  
Edward W. Vogel III ◽  
...  

2020 ◽  
Vol 34 (11) ◽  
pp. 15516-15530
Author(s):  
Xiao W. Mao ◽  
Nina C. Nishiyama ◽  
Stephanie D. Byrum ◽  
Seta Stanbouly ◽  
Tamako Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document